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L I S T O F F I G U R E S

Figure 1.1 Schematic of the various types of active particles and their orientation-

ally ordered states. Polar active particles (top left image), such as bac-

teria or birds, have a head and a tail and are generally self-propelled

along their long axis. They can order in polar states (bottom left) or

nematic states (bottom center). The polar state is also a moving state

with a nonzero mean velocity. Apolar active particles (top right im-

age) are head-tail symmetric and can order in nematic states (bottom

right). 6

Figure 2.1 (left) Vector plot of local polarisation and (right) density inside the

channel for activity RA = 0.67. Different plots are snapshot of polar-

isation and density at different times. (left) local polarisation shows

vortex type periodic pattern (rolls) along the long axis of the channel.

Different color dots on periodic rolls represent distinct vortex. Density

also shows periodic pattern. Bright regions are high density and dark

regions are low density. Top to bottom figures are from small to large

time. With time periodic rolls for both density and and local polarisa-

tion moves from one end to other end of the channel. Arrow on the

top of the figure represent direction of motion of periodic pattern. This

direction is spontaneously chosen from two equally possible direction

in the system. 25
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Figure 2.2 Geometry of confined channel and orientation of particle at the two

confined boundaries. x-direction is chosen along the long axis of the

channel and z-direction is the confinement direction. Periodic bound-

ary condition is used along the long axis of the channel. Orientation

is parallel to +x-direction at bottom boundary (z=1) and parallel to

-x-direction at top boundary (z=d). Magnitude of polarisation |P| = 1

is fixed at two boundaries and density is maintained to mean value

ρ0 = 0.1. 26

Figure 2.3 For zero activity RA = 0 or SPS v0 = 0.0: (a) vector plot of orien-

tation field, which shown periodic vortex type pattern rolls. (b) x-

component of polarisation Px (c) z-component of polarisation Pz and

(d) density ρ(x): along the long axis of the channel, averaged over the

z-direction. 27

Figure 2.4 Plot of percentage density fluctuation %∆N vs. activity RA for differ-

ent width d of the channel. ∆N shows non monotonic behaviour as we

increase activity RA. Density inhomogeneity increases as we increase

width of the channel. 28

Figure 2.5 Plot of one dimensional density along the long axis of the channel

for different self-propelled speeds (a) For small RA = 0.13, density

shows inhomogeneous structure but with time this inhomogeneous

structure does not move much from its position. (b)-(c) For RA = 0.53

and 1.13, pattern of high and low density move along the long axis

of the channel. Patterns move with different speeds at different self-

propelled speeds. (d) Again for large RA = 1.87, pattern does not

move much with time. Density inhomogeneity is small compared to

that at intermediate RA. Length of the arrow denotes the shift in the

density pattern with time. 30
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Figure 2.6 Cartoon of periodic pattern of density for finite self-propelled speed

v0 or activity RA. rmax[i] shows the position of ith maxima and rmin[i]

the position of the ith minima of density. The two arrows denote the

direction of alignment at the two boundaries. We record the position

of maxima and minima at different times. 33

Figure 2.7 Plot of (a) mean square displacement (MSD) ∆(t) and (b) correspond-

ing diffusion coefficient D(t) = ∆(t)/(2t) vs. time t, of position of

high and low density peak position average over many realisation.

Different curves are for different activity ranging from RA = 0.0, large

values RA = 1.67. For small RA ≤ 0.13, ∆(t) ' t (a) and density shows

diffusive behaviour hence D(t) approaches constant value (b) at large

time. For intermediate 0.67 ≤ RA < 1.33, ∆(t) ' t2 and travelling

periodic pattern (a) and hence D(t) ' t (b), and for large RA ≥ 1.67,

again diffusive and hence ∆(t) ' t (a) and D(t) approaches constant

value (b). Two Straight lines in (a) are line of slope 1 and 2. and in (b)

straight line is of slope 1. 36

Figure 3.1 (a) The schematic picture of a square lattice with obstacles at its ver-

tices. Centre to centre distance between obstacles a = 1.0. The packing

fraction of the lattice is varied from Φ = 0.125 (obstacle free substrate)

to Φ = 0.39. (b) The schematic picture of a quasi-one-dimensional cor-

rugated channel comprised periodically arrayed circular / elliptical

obstacles. The periodicity a, and width of the channel d are shown.

re f f (defined in the text) is shown. The Φ of the channel is varied from

Φ = 0.10 to 0.60 by changing d or a. Boxes show unit cell for both

cases. x and y directions for both model are shown. 41
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Figure 3.2 Plot of ballistic trajectory of four ABPs at the beginning and when they

follow the obstacle boundary are shown in (a) and (b) respectively.

Initial coordinate for all ABPs is (49.5, 49.5), and their directions are

different. Four different colors used for four ABPs. The intersection

points of the dotted lines in (b) represent centre of an obstacle. The

boxes in (a) represent the end point of the trajectories, and boxes in

(b) represent the starting of the trajectories. Φ = 0.39. Plot of late

time diffusive trajectory of an ABP on the two dimensional periodic

obstacle substrate of Φ = 0.39, and Φ = 0.125 (free substrate) are

shown in (c) and (d) respectively. The time interval is same (100) in

(c) and (d). We consider Pe = 50. 43

Figure 3.3 Plot of the mean square displacement of the ABP
〈
∆r2〉 vs. time t in

the periodic square lattice of Φ = 0.39 (a) and Φ = 0.125 (obstacle free

substrate)(b). Region I and III are ballistic and diffusive regions of the

ABP respectively. Line of slope 2 (magenta) and 1 (indigo) are shown.

The approximate cross-over point from super-diffusive to diffusive

dynamics for different Pe for both cases are shown by an blue arrow.

In inset of (a),
〈
∆r2〉 with time t for different Pe in region II (when

ABP moves along obstacle boundary) is shown. 44

Figure 3.4 Plot of scaled mean square displacement
〈
∆r2〉 /4De f f tc vs. scaled

time t/tc of the ABP in the square lattice of Φ = 0.39 (a) and Φ = 0.125

(obstacle free substrate) (b) are shown. (c) The cross-over time tc with

Pe for Φ = 0.39 and Φ = 0.125(obstacle free substrate) are shown by

red squares and black circles respectively. 45
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Figure 3.5 (a) Variation of the < ∆r2 > /4t with time t for Pe = 50 is shown.

The black and green line is for Φ = 0.125(obstacle free substrate) and

Φ = 0.39, respectively. (b) Plot of the effective translational diffusion

constant De f f of the ABP for different Pe. The black circles and red

squares and blue triangles are for the periodic Φ = 0.125 (obstacle

free substrate), Φ = 0.25 and Φ = 0.39 respectively. Linear slope for

Φ = 0.125, 0.25 and 0.39 are 0.0018, 0.0011, 0.0009, respectively. Plot of

P(Θ) of the ABP for Φ = 0.39 and Φ = 0.125 (obstacle free substrate)

are shown in (c) and (d) respectively. For (c) and (d) we consider Pe =

50. 46

Figure 3.6 Plot of the mean square displacement
〈
∆r2〉 , the exponent β at early

and late time of the ABP in the corrugated channel for different Φ are

shown in (a-c), respectively. We consider Pe = 100 and Φ changes as

we vary channel width d.
〈
∆r2〉, the exponent β at early and late time

of the ABP in a flat repulsive channel of width d = 0.42 are shown in

(d-f), respectively. For flat channel the radius of the ABP rp = 0.2, and

Pe = 50. 48

Figure 3.7 (a) Plot of the transport speed VT of the ABP in the corrugated channel

with packing fraction Φ. We varied Φ from 0.10 to 0.60. For circles, we

change channel width d to vary Φ, and for squares, Φ is changed

by varying periodicity a of the obstacles along the boundary of the

channel. (b) Plot of VT of the ABP in the corrugated channel comprised

periodically arrayed elliptical obstacles vs. b′. We fixed the Φ = 0.52

and a′ = 0.29. For (a) and (b) Pe = 100. Error bar of VT is shown for

all cases. 48
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Figure 4.1 Plot of the global velocity V vs. the noise strength η for four different

distance dependent parameters a. Fig. (a-d) are for a = 1.0, 0.5, 0.4, 0.01

respectively. In Fig. (d), the variation of V is clearly continuous for all

system sizes, and there is no crossover. The variation of V changes as

we increase a, and there is a crossover for a = 1.0. Plot of the V for

four different system sizes ( N = 1000, 2000, 5000, 10000) are shown

by black •, red � , green N and blue � respectively. 53

Figure 4.2 Upper panel : Plot of the time series of the global velocity V for four

different a = (0.01, 0.4, 0.5, 1.0), from top to bottom. The time series

of the V are plotted for three different noise strengths η1(a)(black)

< η2(a)(red) < η3(a)(blue) close to the critical noise strength ηc for

each a. For a = 0.01 the time-series of the V(t) is shown for η1 =

0.099(black), η2 = 0.100(red) and η3 = 0.101(blue). Similarly η1 < η2 <

η3 for a = 0.4, 0.5 and 1.0 are (0.358, 0.359, 0.360), (0.409, 0.410, 0.411)

and (0.627, 0.628, 0.629) respectively. There is a clear switching behav-

ior in the global velocity variation for a = 1.0, and it vanishes as

we decrease a. Time-series are shifted on the vertical axis for clarity.

Lower panel : We plot the probability distribution function (PDF) of the

global velocity P(V) for four different a = (1.0, 0.5, 0.4, 0.01) in Fig. (a

- d) respectively. We consider three different η for each a, same as in

upper panel. In Fig. (a) plot of P(V) is clearly bimodal, and as we

decrease a it becomes to uni-modal in Fig. (d). All the plots are for

N = 5000. 54

Figure 4.3 Plot of the Binder cumulant U vs. the noise strength η for four differ-

ent distance dependent parameter a. Fig. (a-d) are for a = 1.0, 0.5, 0.4, 0.01

respectively. U varies discontinuously from 1/3 (disordered state) to

2/3 (ordered state) in Fig. (a), and it goes continuously from 1/3 to

2/3 in Fig. (d). Discontinuity in the variation of U increases with sys-

tem size for a & 0.4, and it decreases for a . 0.4. Symbols have the

same meaning as in Fig. 4.1. 55
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Figure 4.4 Main : Schematic phase diagram of the disorder-to-order transition

in noise strength η and distance dependent parameter a (η, a) plane.

For all a > 0 there is a phase transition from a disordered to an

ordered phase with decreasing η across the critical noise strength

line. Dashed line indicates the nature of the transition is continuous,

whereas solid line indicates the discontinuous transition. The nature

of transition changes from discontinuous to continuous at a tri-critical

point aTCP(square). Lower inset: we compare with the mean-field cal-

culation of the critical noise strength ηc for different a with our nu-

merical data. Mean field results fit well with numerical data for small

values of a. In upper inset : plot of 1− aTCP vs. 1/N shows the varia-

tion of TCP with system size. We find aTCP converges to a ≈ 0.39 for

N → ∞(thermodynamic limit). 56

Figure 4.5 [Color online] Plot of real space snapshots of the particle density dis-

tribution for four different a(1.0, 0.5, 0.4, 0.01). Upper panel: Plot of the

particle density distribution for a = 1.0 and a = 0.5 from left to right

respectively. Lower panel: Plot of the particle density distribution for

a = 0.4 and a = 0.01 in the same order. Color bar shows the number

of particles in a unit sized sub-cell. 57

Figure 4.6 Plot of the average density phase separation order parameter < Q >

vs. a, and the average standard deviation in particle number in a unit

cell < ∆φ > vs. a are shown in Fig. (a) and (b) respectively in log-

log scale. < Q > and < ∆φ > decay exponentially from a = 1.0 to

a ≈ 0.2. Both show similar power law decay with the exponent 0.13,

for small values of a. In the insets of Fig (a) and (b), we show the

exponential decay of the < Q > (∼ e0.46a) and < ∆φ > (∼ e0.33a) in

semi-log scale. 58
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Figure 4.7 Plot of F(q, a) = (a ln(a)+1−a)
(ln(a))2 − DV q2

2 [( λ
v0
− 1) +

√
( λ

v0
− 1)2 + 1

2v0
] vs.

wave vector q. For v0 = 0.5, Dv = 1.0, λ = 1.0, α0 = 1.0. F(q, a)

becomes +ve for small q, which suggests that hydrodynamic mode

becomes unstable at smaller wave vector. Region of instability contin-

uously increases with increasing a. 59

Figure 5.1 Plot of the global order parameter V with different system sizes N

for four different values of σ(0.0, 0.0005, 0.005 and 0.05) are shown

in (a-d), respectively. Black circles are numerical data and red line is

exponential fitting of the numerical data points. We consider density
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Figure 5.4 Plot of the probability distribution of the number of neighbors P(N)
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1
I N T R O D U C T I O N

Statistical mechanics is a branch of physics that started at the end of eighteenth century

with the novel works of James Clerk Maxwell, Ludwig Boltzmann, Josiah Willard Gibbs

and Albert Einstein, and it introduces the reader to a general framework and viewpoint

of different systems with a large number of degrees of freedom. It also aims to bridge the

macroscopic thermodynamic properties to the microscopic properties of the matter which

helps to predict the statistical properties of fluctuations on different length and time scales.

Let us first introduce the connection between thermodynamics and statistical mechanics.

Let us consider a physical system comprised of N identical particles confined in a space of

volume V, and have total energy E. The macrostate of the system is defined by variables

(N, V, E). On the other hand, there will be a large number of possible arrangements in

which the total energy E of the system can be distributed among the N particles. Each of

these possible arrangements specifies a microstate of the system [1–4]. Therefore, the number

of variables that are required to describe the microscopic state in 3-dimensions (3D) is 6N

(3N for position and 3N for momentum), where N is the number of molecules. This 6N

dimensional space constructs the phase space of the system, and each point in this phase space

is a microstate of the system. Whereas a macrostate consists of a large number of microstates,

and it represents a volume in the phase space. In microscopic approach it is difficult to keep

track of each degrees of freedom, but we can specify the probability dP of the system in an

elemental volume dV of the phase space using statistical description. This probability can be

defined as dP = limT→∞dt/T, where dt is the time spent by the system in the volume dV

and T is the total time over which the system is tracked. Average of any statistical quantity

1



f (t) along the trajectory is defined f̄ = limT→∞
1
T
∫ T

0 f (t)dt. In this approach the time average

of the statistical quantity is calculated. Alternative method to calculate the average of any

statistical quantity called ensemble average. In this method each point in the phase space

volume corresponds to different copies of the same system, and called as an ensemble. If

N̄ is the number of copies corresponding to the volume V, and dN̄ is the number of copies

corresponding to dV, then the probability of the system lying in V is defined as dP̄ =

limN̄→∞
dN̄
N̄

= ρ(qi, pi)dV, where qi and pi represent 3N position and momentum coordinates.

ρ(qi, pi) is the density in the ensemble space. Average of any quantity f can be obtained as

〈 f 〉 =
∫

f ρdV, where ρ is the probability density. Equilibrium statistical mechanics is mainly

based on the following hypothesis: (i) the ergodic hypothesis - both the descriptions of

averaging discussed above are completely equivalent, (ii) the Boltzmann’s hypothesis - if the

volume filled by a trajectory in phase space is V, then the entropy S of the system is S = klnV,

where k is the Boltzmann’s constant, and (iii) principle of apriori - all the microstates which

are compatible to a macrostate are equally probable. The Boltzmann’s hypothesis bridges

the thermodynamics and the statistical mechanics, and the ergodic hypothesis ensures the

system is internally consistent [1–3, 5].

Most of the natural systems violate the general hypothesis of the equilibrium statistical

mechanics. In last three decades, there has been significant progress in understanding of

different phenomena of natural systems like collective behavior in different biological and

cellular systems [6–8]. As these systems do not follow the usual formalisms of the equilib-

rium statistical mechanics are known as nonequilibrium systems. Understanding the broad

range of nonequilibrium phenomena in terms of the statistical mechanics as well as the ther-

modynamic framework is an emerging area of current research. In this thesis our works

mainly focus on active systems, a special class of nonequilibrium systems, and their statisti-

cal properties.

1.1 active matter systems : out-of-equilibrium

Active matter is a nonequilibrium system and it is abundant in nature. In this section we

introduce various examples of the Active Matter systems [9–16]. As we go along, we will
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discuss about the origin of this subfield and different fascinating features of it where physics

enters biology in two wide and overlapping areas: (i) information and (ii) mechanics [17, 18].

We will emphasize on the mechanics, statistics of living matter in this thesis. The unifying

characteristic of these systems (active matter) is that they are composed of large numbers

of Self-propelled particles (SPPs) and have the ability to transduce ambient free energy into

systematic movement [19–25]. The interaction among these SPPs and with the medium give

rise to highly correlated collective motion. In addition to these real systems there are am-

ple varieties of artificially designed systems, e. g., active colloids [26–28], active polar disks

[29], vibrated granular media [30–33], chemically boosted wire-cuts [34]. The active systems

do not follow the general framework of the equilibrium thermodynamics and statistical me-

chanics [1, 3, 4, 35, 36]. The inherent property of these systems is that they show collective

and coherent motion in wide range. In vitro mixtures of cell extracts of biofilaments and

associated motor proteins as shown in a study by Surrey et al. [9], bacterial suspensions [12],

and human melanocytes cells [37] are some of the examples which show collective behavior

in micrometer range. On the other hand, bird flock, fish school [38, 39], collection of robots

[40], etc. show flocking behavior in meter or some fraction of kilometer range.

In the above mentioned systems, each SPP moves forward at the cost of its internal energy

which is transduced to mechanical energy. Here the dissipated energy is not correlated with

the input, like equilibrium systems, viz., Brownian motion. Due to energy injection at the

individual particle level the active systems are not similar to the other out-of-equilibrium

systems like a bulk fluid sheared from the top [41, 42] or driven diffusive systems [43]. How-

ever, a nonequilibrium steady-state (NESS) can be defined similar to other out-of-equilibrium

systems [43]. Unlike the true equilibrium system where the macroscopic properties statisti-

cally remain unchanged with time, i. e., a steady-state prevails, here a NESS is defined when

relevant macroscopic observables statistically remain the same with time. We can understand

NESS by taking an example of a bird flock where all the agents of the flock move coherently.

Let us consider P(C, t) is the probability of finding the system in a microscopic configura-

tion C at time t. The time evolution of P(C, t) is defined by the master equation

dP(C, t)
dt

= ∑
C′ 6=C

[W(C′ → C)P(C′, t)−W(C → C′)P(C, t)], (1.1)

3



where W(C′ → C) is the transition rate from configuration C′ to C. At the steady state, P(C, t)

is no longer function of time hence L.H.S. of the Eq. 1.1 will vanish. Therefore, the probability

of the system going from configuration C to C′ is same as to the probability of the system

going from C′ to C. Hence, the detailed balance is satisfied, which sets the temperature of

the system. But, active system does not satisfy the hypothesis of detailed balance because

there exists some non-zero current (e.g., energy current) in the steady state. In some cases of

active matter, an effective temperature can be defined in certain limit of associated parameters.

Hence, an effective fluctuation-dissipation-relation (FDR) can be defined [44–49].

Another important feature of the active systems is that density fluctuations is much larger

than usual equilibrium systems in the steady state. In real space, if a region of volume V

contains N number of particles on average, the system generally shows fluctuations with

standard deviation ∆N ∝
√

N provided that the system is not close to critical point. In active

matter systems the density fluctuations grow faster than
√

N, and in two dimensions it also

grows as fast as N in some cases [20, 50].

1.2 categories of active matter systems

1.2.1 Dry and wet systems

In this thesis we will focus on various generic aspects of the large-scale behavior of the active

matter systems and characterize their properties. We will also discuss different universality

classes based on symmetry and conservation laws with a well-defined macroscopic behavior.

These systems are in contact with a substrate during their motion. They can be described

with or without momentum conservation depends on the system parameters, and the length

scale of interest. The systems where the substrate provides only friction, can be modeled

as a system with overdamped dynamics and no-momentum conservation. These systems

without momentum conservation can be described as dry active matter systems. Examples

of these systems are like bacteria gliding on a rigid surface [51], animal herds on land [52],

and in artificial domain vibrated granular particles on a plate [29, 31, 50, 53, 54]. In the

same category, it is possible to model some systems like collections of swimming bacteria
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[55] and motor-filament suspensions [56] without an explicit ambient fluid. In these mod-

els, steric plus stochastic effects could put underground the hydrodynamic interactions. In

minimal flocking models we observe areal displays by a large group of birds, and the inter-

action among them is short range [57]. In all of these above mentioned systems momentum

is damped by friction with the substrate. On the other hand, for solvent-mediated hydrody-

namic interactions the dynamics of the suspending fluid must be considered. The systems

(fluid+particles) with momentum conservation are referred as wet active matter systems. Ex-

amples of these systems are suspensions of catalytic colloidal rods [34], cell cytoskeleton

and cytoskeletal extracts in bulk suspensions [13], swimming bacteria in bulk [12] and Pt.

catalytic colloids [58]. The system of interest can be dry or wet depending on interaction

with the medium. But we can also consider the length scale of interest and select models

(momentum conserved / momentum non-conserved) accordingly.

In this thesis we will discuss about some key features of the dry polar active matter systems.

The number of particle is the only conserved quantity of the system (birth and death are

neglected). Individual active particles of the systems can be of different kind depending on

their shape and symmetry. In the next section we will introduce different types of active

particles.

1.2.2 Polar and apolar systems

Depending on the symmetry of the active particles we can classify them as (i) polar particles

- head and tail can be distinguished [38, 59, 60], and (ii) apolar particles - head and tail

can not be distinguished [61, 62]. Polar particles can align parallel or anti-parallel to each

other. Therefore, they will form either a polar ordered state with net flow velocity or an

apolar ordered state with zero flow velocity, as shown in Fig. 1.1. On the other hand, apolar

particles don’t have polarity and form nematic ordered state, as shown in Fig. 1.1. Ordered

state of polar particles is defined either by vector or by nematic order parameter, and ordered

state of the apolar particles is defined by nematic order parameter. Now, we will briefly

describe the characteristics of the polar active particles or (self-propelled particles (SPPs)).

These SPPs show remarkable features during their motion, like, they show coherent motion
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Figure 1.1: Schematic of the various types of active particles and their orientationally ordered states.
Polar active particles (top left image), such as bacteria or birds, have a head and a tail and
are generally self-propelled along their long axis. They can order in polar states (bottom
left) or nematic states (bottom center). The polar state is also a moving state with a nonzero
mean velocity. Apolar active particles (top right image) are head-tail symmetric and can
order in nematic states (bottom right).

when they are put in a collection. This fascinating feature was explained in 1995 by Vicsek

et al. using a simple rule based model [57] , renowned as Vicsek Model (VM). In the same

year Toner et al. predict the existence of a long-range ordered phase of flocks, in which all

the SPPs of a large flock move together with a non-zero mean velocity in two dimensions

(2D) [52, 63]. In Vicsek model the SPPs interact with their neighbors through a short range

alignment interaction. The mean density of the system controls the number of interacting

neighbors and the randomness in alignment interaction is represented as noise in the system.

The density and noise are the two main control parameters of these systems. The system

shows a nonequilibrium phase transition from a disordered state at low density or high

noise to an ordered (coherently moving) state at high density or low noise strength. Using

hydrodynamical equations of motion for density and polarization field, Toner et al. find

that the flocks exhibit a true long-range ordered spontaneously broken rotational symmetry

state in 2D, whereas there exist no broken symmetry state in 2D in equilibrium system

with continuous symmetry (Mermin-Wagner theorem). Recently, the Toner and Tu model is

derived by coarse graining the microscopic Vicsek model using the Boltzmann-equation and
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fluctuating hydrodynamic approach [64–66]. These descriptions provide microscopic basis

for the hydrodynamic theory.

On the other hand, systems consist of apolar particles show large number fluctuations in

comparison to their equilibrium counterparts. In a study, Ramaswamy et al. predicted that

the number fluctuation ∆N is proportional to the mean number of SPPs 〈N〉 in the system in

2D [50]. This large number fluctuations in apolar systems is called as Giant number fluctuation

(GNF). Later on experimental studies confirm the existence of GNF in apolar systems [31, 67].

Chaté et al. also find the existence of Kosterlitz-Thouless-like transition to quasi-long-range

orientational order for apolar systems [67].

In Vicsek like systems, the alignment interaction plays crucial role in the formation of "or-

dered state". In these systems the SPPs are generally elongated and can order in states with

either polar or apolar (nematic) orientational order. Another interesting class of SPPs which

can be distinguished from their head and tail during their motion, but they are symmetric

in shape [68–72]. These types of particles are called as Active Brownian particles (ABP). Hence,

simple volume exclusion will not lead to a polar/apolar ordered state. There is no alignment

interaction as proposed in the Vicsek model and these particles do not show large-scale align-

ment. However, above a packing fraction Φc ≈ 0.4 (much smaller than Φc for random close

packing in 2D) this minimal system phase separates into solid like and gas phases. Hence,

they also exhibit large number fluctuations like polar and nematic systems above the critical

packing fraction Φc [68]. There is another variety of polar SPPs, run-and-tumble particles,

which perform self-propulsion by a sequence of runs. During these runs they move with

almost constant speed and change their direction by sudden and rapid randomizations in

direction or tumbles [47, 73, 74]. In a recent study, Tailleur et al. discuss about the domain

formation and other collective phenomena of these systems [47]. Our studies mainly focus

on polar SPPs and ABPs only.

1.3 inhomogeneity and confinement

In addition to the extensive study of active systems in clean environments [19, 21, 57, 75, 76],

recently people have started to look for their bulk properties in heterogeneous medium [77–
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86]. The motion of flocks, herds, and swarms through different kind of disordered environ-

ment and confined medium is an emerging field of research in the last five years, and these

studies are crucial not only to animal groups in the wild, but also to effective applications of

collective robotics and active materials composed of synthetic motile units. In this section we

will briefly discuss about some of the important studies of active particles in heterogeneous

medium. In a recent study, Morin et al. examine the motion of motile colloids in a randomly

positioned microfabricated obstacles [78], and they find that for a sufficient disorder density

the collective motion is suppressed in the form of a first-order phase transition generic to

all polar active materials. In recent studies, the effect of heterogeneity is discussed on the

long-range ordering behavior of a collection of SPPs moving on a 2D substrate [79, 84, 86]. It

is observed that long-range ordering is destroyed in the presence of quenched heterogeneity

and system shows a quasi long range ordered state.

Besides the studies about active particles in the presence of different kinds of inhomogene-

ity, there are numerous studies about SPPs in confined geometries. In equilibrium physical

systems the diffusive transport of particles is a ubiquitous feature. In a recent article, Burada

et al. investigated the stochastic transport of Brownian particles in microsized geometries of

varying cross sections and in narrow channels wherein the diffusing particles are hindered

from passing each other (single-file diffusion) [87]. Authors find that for particles undergo-

ing biased diffusion in static suspension media enclosed by confining geometries, transport

exhibits intriguing features such as 1) a decrease in nonlinear mobility with increasing tem-

perature also 2) a broad peak of the effective diffusion above the free diffusion limit. They

also report that the rectification or segregation of the diffusing Brownian particles becomes

possible if the suspension medium is subjected to external and time-dependent forcing. Fur-

thermore, in very narrow spatially modulated channels the particle-particle interactions can

induce anomalous sub-diffusion. As the confinement gives rise to many fascinating features

like rectification and segregation in passive (equilibrium) systems which motivates people

to study the active systems in different confined geometries. Recent study of Dey et al. show

that the confinement can enhance the average rate of binding of the motor-cargo complexes

to the microtubule, which leads to an enhancement in the average velocity [88]. In another

work, Stark et al. report that the asymmetric channel corrugation induces a netflux in the
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motion of microswimmers along the channel, the strength and direction of which strongly

depends on the swimmer type [89]. Furthermore, a non-zero average drift can be induced in

ABP using potential modulation between two directions in a 2D periodic corrugated channel

[90]. In this thesis in chapters 2 and 3 we will discuss some key features of SPPs in confined

geometries.

1.4 methodology

Active systems are non-equilibrium systems, hence the framework of characterizing or un-

derstanding the different complex and fascinating behaviors of these systems are not similar

to their equilibrium counter part. Since there is no conservation of energy, it is not possible

to write an effective Hamiltonian to describe such system. In last three decades, there are

enormous number of studies about active systems based on following three approaches: (i)

microscopic rule-based study like Vicsek model (VM) [57, 91], and also the derivation of

coarse-grained equations for slow variables from the rule based models [64, 65], (ii) phe-

nomenological approach, writing different terms in the hydrodynamic equations of motion

based on symmetry of the system, (iii) and obviously the experiments are always encourag-

ing and give more insight about these systems [32, 34, 53, 92]. In the next section we discuss

about the different techniques which we have used in our studies.

1.4.1 Microscopic rule based study or agent based simulation

Agent based or direct rule based simulation is commonly used technique to study active mat-

ter systems. In this technique one consider a collection of pseudo-particles, and update their

positions and velocities according to fixed dynamical rules. In this method, the microscopic

update rules are adopted looking at the phenomenology of the concerned active system.

Active shape asymmetric agents move along their long body axis. For finite size particles

volume exclusion or steric effects can guide them to align with their neighbors in contact

[68, 75, 93, 94]. For polar agents the interactions can be thought of like "ferromagnetic" inter-

action in spin systems. On the other hand, for apolar agents both parallel and anti-parallel
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interactions are possible. Many studies are done considering the agents as point particles,

but alignment interactions (polar/apolar) are kept by hand to mimic the alignment due to

the finite size of the agents [57, 91]. The interactions are always not exact, i.e., the SPPs make

errors following their neighbors. These errors are accounted by appropriate noise term in

the update rule [57, 91].

1.4.1.1 Visek Model (VM)

Vicsek model (VM) is a rule based model, which is the first insightful study about the collec-

tive behavior of a two-dimensional polar SPPs [57]. The work find the clustering, transport,

and phase transition in the active systems. In this model, each particle interacts with its

neighbors through a short range alignment interaction, and they (SPPs) move in the aver-

age direction of all the neighbouring particles within an interaction radius. However, the

particles make errors during their motion in the average direction which is taken care by

considering a random noise in the system. The update rule governs the position ri(t) and

orientation θi(t) update.

ri(t + 1) = ri(t) + vi∆t, (1.2)

where vi is the self-propulsion speed of the ith particle.

θ(t + 1) = 〈θ(t)〉r + η∆θ, (1.3)

where 〈θ(t)〉r is the average direction of the ith particle (including the particle itself) being

within a radius r surrounding the given particle. ∆θ is the noise which takes care of the error

and it varies between −π to π. η is the noise strength which varies in the range [0, 1]. Noise

introduced here is such that it rotates the mean alignment of the particle due to its neighbors

by a small angle. Hence, it is called as "angular" noise. The density ρ of the particles and noise

strength η are the two control parameters of the system. Authors characterized the collective

motion of the particles at different limit of density and noise strength: (i) for small densities

and noise the particles tend to form groups moving coherently in random directions, (ii)

at higher densities and noise the particles move randomly with some correlation, and (iii)
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for higher density and small noise the motion becomes ordered [57]. Furthermore, they

also studied the order-disorder phase transition of the system and find that the transition

is continuous. Also different critical exponents are estimated as they are usually present in

equilibrium systems undergoing a phase transition.

noise : angular and vector : After about a decade of Vicsek’s study, a debate started

about the nature of the order-disorder transition of the polar SPPs. In 2004, Chaté and his

collaborators introduced another type of noise which add a small vector to the resultant

vector of all the direction vectors of the neighbors (including the particle itself). This noise is

called as "vector" noise [75, 76, 91]. The position update rule for the SPPs is same as in VM,

but the orientation update is modified as following,

θj(t + 1) = arg

[
∑
k∈r

exp(iθk(t)) + ηnj(t) exp
(
iψj(t)

)]
, (1.4)

arg(x = (x1, x2)) = atan
(

x2
x1

)
, nj(t) is the number of neighbours of the jth particle within

its interaction range r at time t. The advantage of using vector noise is that the influence

of it decreases with increasing local order, whereas the intensity of the angular noise is

independent of local alignment. They also note that for angular noise the nature of the order-

disorder transition becomes discontinuous provided one considers large enough system size

because the finite size effect is much more dominant for angular noise [57] as compared to

the vectorial choice [91]. The nature of the phase transition in these systems is still topic of

debate. In various studies the nature of the transition depends on the update mechanism of

the system [95]. Now, it is believed that the density phase separation is the key to make the

transition first order [72, 96]. But there is still lack of experiments to settle the debate about

the nature of the phase transition.

1.4.1.2 Langevin dynamics for active particle

The passive or Brownian particle suffers collisions from its surrounding medium and their

dynamics is determined by stochastic collisions. In equilibrium, there is a balance between
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dissipation and fluctuations in the system, and both of them are related by fluctuation-

dissipation relation (FDR) [2, 3]. Dynamics of passive particles can be described by New-

tonian dynamics including friction and stochastic force [97]. Hence, motion of Brownian

particle with Stokes friction coefficient γ in a space dependent potential U(r) can be written

by Langevin dynamics.

m
dv
dt

= −γv−∇U(r) + F(t), (1.5)

where F(t) is the temporally short correlated random force and 〈F(t)〉 = 0. 〈Fi(t)Fj(t′)〉 =

2Dpδi,jδ(t − t′), where the components Fi(t) are referred to as Gaussian white noise with

intensity Dp, and i, j are correspond to the Cartesian coordinates. In equilibrium Dp and γ

are related by FDR, Dp = γkBT where kB and T are the Boltzmann constant and temperature

of the system, respectively.

ABPs are in general symmetrical in shape, hence there is no alignment interactions. But

the active nature of these particles induces motility induced phase separation (MIPS) [68] at

much lower density than passive particles. In different systems like granular materials and

living organisms, the particles move in dense fluid or high frictional substrate. Therefore,

the first term of Eq. 1.5 can be neglected in the overdamped limit. Now the dynamics of the

ABP is given by following equations

∂tri = v0ni + µ ∑
j 6=i

Fij + ηT
i (t) (1.6)

∂tθi = ηi(t), (1.7)

where ABPs are considered as soft repulsive disk of radius r to take care of the steric ef-

fect. The direction of motion of the particle defined by unit vector ni = (cos(θi), sin(θi)),

where θi is the orientation of the ith particle. The first term in the R.H.S of Eq. 1.6 is due to

self-propelled nature of the ABP, and v0 is the self-propulsion speed of the particle. ηT
i (t)

is a translational Gaussian white noise with zero mean and correlations 〈ηT
iα(t)η

T
iβ(t
′)〉 =
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2Dδijδαβδ(t− t′), where α, β denotes Cartesian coordinates and diffusion constant D = kBTµ.

ηi(t) is a rotational Gaussian white noise with zero mean and correlations 〈ηi(t)ηj(t′)〉 =

2vrδijδ(t− t′), vr is the rotational diffusion rate and µ is the mobility. Fij is short range repul-

sive force between ith and jth particle. In the study of Fily et al. [68], Fij = −k(2a− rij)nij if

rij < 2a and Fij = 0 otherwise. In another study of ABP, Stark et al. consider the Weeks-

Chandler-Andersen (WCA) potential as a soft repulsive potential between the ABP [98].

General properties of the ABPs should be independent of the specific form of the repul-

sive potential. In our study in chapter 3, we have considered WCA potential to study the

dynamics of ABP in a periodic arrays of obstacles and confined channels.

1.4.2 Phenomenology : hydrodynamic equations of motion

In this section we will discuss about the effective continuum theory of the flocking model

as introduce in sec. 1.4.1.1 . The effective continuum theory for flocking was first introduced

by Toner and Tu in 1995 [52, 63]. The fundamental axioms of hydrodynamic theory are the

conservation laws like conservation of mass, conservation of momentum and conservation

of energy, etc. or terms are written based on underlying symmetries of the system. Toner

and Tu also formulated the effective continuum model on the basis of symmetry considera-

tions. Since for the dry active matter system the particles move on a frictional substrate and

the particles constantly transform their internal energy into systematic motion, the only con-

served field in the system is the density of active particles ρ(r, t) (there is no death and birth

of SPPs). Also these systems show coherent motion which leads to an ordered state which

is defined by polarization vector field P(r, t). The coarse grained fields ρ(r, t) and P(r, t) are

defined by,

ρ(r, t) =
N

∑
i

δ(r− ri(t)) (1.8)

P(r, t) =
1

ρ(r, t)

N

∑
i

ni(t)δ(r− ri(t)), (1.9)
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where the summation is over all the particles, ri(t) and ni(t) is the position and the unit

orientation vector of ith particle at time t.

Although, the active systems are non-equilibrium system, it is conventional to write the

dynamical equations of motion for these systems as a combination of a free energy functional

FP which emerges due to the interaction among the particles plus terms due to activity.

∂tρ(r, t) + v0∇.(ρP) = −∇.(− 1
γρ
∇δFP

δρ
+ fρ), (1.10)

∂tP + λ1(P.∇)P = − 1
γ

δFP

δP
+ f, (1.11)

where γρ, γ are kinetic coefficients, and v0 is the self-propulsion speed of the active particles.

First term in the R.H.S. of Eq. 1.10 represents diffusive density current, and the second

term denotes conservative noise. The second term in the L.H.S of the Eq. 1.10 represents

the active current which is proportional to the self-propulsion speed v0. λ1 is the strength

of the advective term in Eq. 1.11. This advective term resembles to the advective term of

famous Navier-Stokes equation [36] for fluids. In active systems, the motion of the particles

are not constrained by the Galilean invariance that would need λ1 = 1. But in active flocks, the

strength of the advective term λ1 is a non-universal phenomenological parameter which can

be determined from microscopic model. In the Toner and Tu model, P acts as both a velocity

field and a local orientation order parameter of the system. Therefore, P introduces a term

for advection and flow alignment in Eq. 1.11, whereas P acts as only velocity field in Eq. 1.10.

The last term on the R.H.S in Eq. 1.11 captures the fluctuations in the system, and it is a

Gaussian white noise with zero mean and correlations

〈 fl(r, t) fm(r′, t′)〉 = 2∆δlmδ(r− r′)δ(t− t′), (1.12)

where ∆ is a constant and dummy indices l, m represents Cartesian components.

In Eqs. 1.10, 1.11 the noise is considered as purely additive, and its dependency on order

parameter P and local density ρ is neglected. As we discussed in the continuum model for
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active systems P plays dual role, (i) P is the orientational order parameter of the system and

(ii) v0P represents the velocity field. This dual behavior of P is important for determining the

large scale characteristics of these systems. Now, the free energy functional in Eqs. 1.10 and

1.11 is given by,

FP =
∫

r
[
α̃(ρ)

2
|P|2 + β̃

4
|P|4 + K̃

2
(∂l Pm)(∂l Pm) +

w
2
|P|2∇.P− w1∇.P

δρ

ρ0
+

A
2

δρ

ρ0

2
], (1.13)

where ρ0 is the mean density of the system, and δρ = ρ− ρ0 is fluctuation in density about

its mean value ρ0. The first two terms in Eq. 1.13 describe the order-disorder transition of the

system. α̃(ρ) is a microscopic model dependent parameter, like it depends on local density ρ

and noise strength [64]. α̃ goes to zero around critical point, and it becomes negative in the

ordered state. Now to describe the physics near to transition one can write α̃ phenomeno-

logically in the following manner, α̃(ρ) = a0(1−
ρ

ρc
), where a0 is a positive constant and α̃

changes sign at ρ = ρc. β̃ is positive to stabilise the system. The third term in Eq. 1.13 is

due to energy cost of spatially inhomogeneous deformations of the coarse grained order pa-

rameter, and the Frank constant K̃ is positive. These order-parameter deformation can arise

from splay or bend deformations in 2D, and these deformations play important role in the

active systems [99]. w terms can be considered as correction to α̃ due to splay. The last term

suppresses the density fluctuation of the system, and A is the compression modulus.

Now by using the free energy functional FP of Eq. 1.13 we can write the hydrodynamic

equation of motion of P as,

∂tP + λ1(P.∇)P = −[α̃(ρ) + β̃|P|2]P + K∇2P− v1∇
ρ

ρ0
+

λ

2
∇|P|2 − λP(∇.P) + f, (1.14)

where v1 = w1/γ and λ = w/γ both have dimensions of velocity. All the parameters with

tilde in Eq. 1.13 are divided by γ and are written without tilde in Eq. 1.14. Polarization P

equation of polar flock as in Eq. 1.14 has a fluid character, and in general P is proportional to

the flock velocity. Eq. 1.14 can be compared to Navier-Stokes equation for a fluid. The second

term of the R.H.S of Eq. 1.14 represents the viscous force. The third and fourth term can be

simplified as an approximate form of pressure gradient −(1/ρ0)∇P, where considering to

the leading order P(ρ) ≈ v1ρ. This term highlights the similarity and contrast with the

15



Navier-Stokes equation. Writing the hydrodynamic equation for P from general symmetry

argument allows two more terms, (λ3/2)∇|P|2 + λ2P(∇ [63, 100]. The derivation based on

free energy (Eq.1.13) using Eq. 1.11 produces λ3 = −λ2 = λ. Later on, using microscopic

description Bertin et al. [64, 101] also find that λ3 = −λ2, and λi ∼ v2
0, v1 = v0/2.

1.4.2.1 Homogeneous steady states

Polar system undergoes order-disorder phase transition depending on system parameters

like density and noise strength. The order-disorder transition is studied using mean field

description in Toner and Tu model [52, 63]. For α > 0, corresponding to ρ0 < ρc, the homo-

geneous steady state of the system is disordered and isotropic state where order parameter

of the system P = 0. For α < 0 corresponding to ρ0 > ρc the system is in the ordered state

which gives a non-zero value of the order parameter P, |P0| =
√

α0

β
, where α0 = α(ρ0). The

continuous rotational symmetry of the system is spontaneously broken in the ordered state

and the flock moves with a velocity v = v0P0. The advective non-linearities in the hydrody-

namic equation of motion of order parameter P in Eq. 1.11 establishes long-range ordering

in the system even in 2D. In the deep ordered state, the linearized hydrodynamics of Eqs.

1.10 and 1.14 suggests two sound modes. The presence of propagating sound modes suggest

the existence of the symmetry broken state in the system in 2D.

1.4.2.2 Two point correlations and giant number fluctuations

Using linearized calculation of hydrodynamic equations of motion one can calculate correla-

tion functions and static structure factor S(q).

S(q) =
1

ρ0V
〈δρq(t)δρ−q(t)〉 =

∫ ∞

−∞

dω

2π
S(q, ω), (1.15)

where δρq is Fourier transform of the density fluctuations, S(q, ω) is the dynamical structure

factor, and S(q, ω) =
1

ρ0V
∫ ∞

0 dt exp(iωt)〈δρq(0)δρ−q(t)〉, where V is the volume of the

system and q and ω are wave vector and angular frequency of the hydrodynamic mode,

respectively. 〈δρq(0)δρ−q(t)〉 gives the density auto-correlation of the system. Toner and

Tu show that S(q) ∼ 1
q2 . The

1
q2 divergence at q → 0 reflects enormous long-wave length

fluctuations in the system. The static structure factor S(q) is related to the number fluctuation
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by ∆N =
√

S(q→ 0)V. The smallest accessible wave vector q ∼ V−1/d, where d is the

dimension of space. Therefore, S(q → 0) ∼ V2/d ∼ 〈N〉2/d, where 〈N〉 is average number of

particles in a region of size V. Hence, the number fluctuations ∆N ∼ 〈N〉a, where a =
1
2
+

1
d

.

Recent experiments find that the large number fluctuations for polar [29] and apolar [31]

system is 2a = 1.45± 0.05 and a = 1, respectively. Hence number fluctuation in these systems

is large and also called as Giant number fluctuation.

1.5 coarsening

In previous sections, we have discussed different features of a collection of SPPs or a single

particle in the steady state. We also mention the role of noise, boundary and inhomogeneities

in these systems. In this section, we will discuss about a class of fascinating studies about

the kinetics of a system towards a steady state due to a rapid quench (changing the system

parameters). A thermodynamically stable state or equilibrium state is determined by the

global minimum of the associated free energy for a given set of parameter values. Also

depending on the value of the different parameters, a system can exist in different phases,

e.g., water which can exist in three phases – liquid, solid and gas. Consider a fluid is in its

solid state, and we rapidly heat it to a temperature where its preferred equilibrium phase

is liquid. The system will take some time to convert from solid to liquid. The initial and

the final states are understood by the properties of the corresponding equilibrium state, but

understanding of the dynamical process is crucial. Over the years, there are many studies

about the kinetics of phase transition for different systems, which help us about the basic

understanding of different dynamical processes [102, 103]. We will first discuss about kinetics

or coarsening of systems which approaches an equilibrium state, and then we will discuss

about the coarsening in the active matter systems.

1.5.1 Coarsening in non-conserved systems (model A)

We shall discuss coarsening in the Ising model [104] as it is a simplest model with immense

utilization. The Ising model was introduced to study phase transitions in magnetic systems.
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In the Ising model spins can have either up (Si = +1) or down (Si = −1) orientation. Now

to study the kinetics of the Ising model, one can consider that the system is connected to

a heat bath that generates stochastic spin flips (Si → −Si). This random spin flip model is

known as Glauber dynamics [105] where the corresponding order parameter of the system is

non-conserved. Now we will discuss the dynamics of paramagnetic to ferromagnetic phase

transition in the Ising model. We consider the system is in the paramagnetic state at T >

Tc, and there is no external magnetic field (h = 0). If we rapidly quench the system to

T < Tc then the system will reach to its preferred equilibrium state with finite spontaneous

magnetization. Also there will be domain formation and domains will coarsen with time.

The coarsening of the domains is characterized by a characteristic domain length L(t), and

a finite system will order either with all up or down state at t→ ∞.

Now for the microscopic description of the Glauber kinetics we need an appropriate order

parameter at the coarse-grained level to describe the system. We can consider the local mag-

netization ψ(r, t) as a coarse-grained variable. The local magnetization in the Ising model

is a scalar order parameter but the order parameter in Glauber dynamics can also be a vec-

tor, as in the XY model. The time dependent Ginzburg Landau (TDGL) theory governs the

dynamics of the order parameter.

∂

∂t
ψ(r, t) = −Γ

δG(ψ)

δψ
+ θ(r, t), (1.16)

where Γ is inverse damping coefficient, and G is the free energy functional which is defined

as

G(ψ) =
∫

dr[g(ψ) +
1
2

K(∇ψ)2], (1.17)

where g(ψ) is the local free energy, the second term in R.H.S is surface tension due to

inhomogeneity in ψ, and K is the strength of the surface tension. In our study we have used

the general form of the ψ4 free energy:

G(ψ) =
∫

dr[− a(Tc − T)
2

ψ2 +
b
4

ψ4 − hψ +
K
2
(∇ψ)2], (1.18)
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where a, b > 0, and Tc is the critical temperature of the system.

Using the expression for ψ4 free energy in Eq. 1.18 and without magnetic field the TDGL

equation in Eq. 1.16 reduces to

∂

∂t
ψ(r, t) = Γ[a(Tc − T)ψ− bψ3 + K∇2ψ] + θ(r, t). (1.19)

Also by introducing rescaled variables one can obtain the dimensionless TDGL equation.

∂

∂t
ψ(r, t) = ψ− ψ3 +∇2ψ + θ(r, t), (1.20)

where 〈θ(r, t)〉 = 0, 〈θ(r′, t′)θ(r′′, t′′)〉 = 2εδ(r′ − r′′)δ(t′ − t′′), ε =
kBTb[a(Tc − T)](d−4)/2

Kd/2 .

1.5.2 Coarsening in conserved systems (model B)

In this section we will discuss the kinetics of conserved orderparameter systems like phase

separation of a binary mixture. If we quench a binary mixture from homogeneous phase

to segregated phase. Initially homogeneous state starts to phase separate as A rich and B

rich domains. At the late time both species (A and B) will be completely phase separated.

In this case the dynamics is different from the non-conserved one. The microscopic kinetics

involves the diffusion of atoms, like atoms jump to the vacant site of the lattice or two species

interchange in a binary mixture. In this mechanism there is spin exchange rather than spin

flips. Therefore, if one spin Si jumps from +1 to -1 then a neighboring spin Sj simultaneously

jumps from -1 to +1. This dynamics is known as Kawasaki dynamics [106].

The microscopic model for conserved model is defined by Cahn-Hilliard-Cook (CHC)

equation. The order parameter of the system is defined by the relative density of the sys-

tem ψ(r, t) = nA − nB, where ni is local density of the ith species.

∂

∂t
ψ(r, t) = ∇.[D∇δG(ψ)

δψ
+ θ(r, t)], (1.21)

where D is the diffusion constant, and G refers to the free energy and as in Eq. 1.18. The

noise is defined by 〈θ(r, t)〉 = 0 and 〈θi(r′, t′)θi(r′′, t′′)〉 = 2DkBTδijδ(r′ − r′′)δ(t′−t′′). Using
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the expression for ψ4 free energy in Eq. 1.18, and without magnetic field the CHC equation

reduces to,

∂

∂t
ψ(r, t) = ∇.[D∇(−a(Tc − T)ψ + bψ3 − K∇2ψ) + θ(r, t)]. (1.22)

Also one can rescale the variables and obtain the dimensionless CHC equation

∂

∂t
ψ(r, t) = ∇.[∇(−ψ + ψ3 −∇2ψ) + θ(r, t)], (1.23)

where 〈θ(r, t)〉 = 0, 〈θi(r′, t′)θi(r′′, t′′)〉 = 2εδijδ(r′− r′′)δ(t′− t′′) and ε =
kBTb[a(Tc − T)](d−4)/2

Kd/2 .

1.5.3 Correlation function and structure factor

During dynamical process domains form, and the system is characterized by a length scale.If

the morphology of the domains statistically does not change with time, the correlation func-

tion C(r, t) of the order parameter shows dynamical scaling, as expressed in the following

C(r, t) =
1
V

∫
dR[〈ψ(R, t)ψ(R + r, t)〉 − 〈ψ(R, t)〉〈ψ(R + r, t)〉] = g(

r
L(t)

), (1.24)

where V is the volume of the system. Here the correlation function is averaged over different

initial conditions and thermal fluctuations. This correlation function is a time dependent

quantity, whereas g(r/L(t)) is a time independent scaling function, where L(t) is the typical

characteristic length of the domain at time t.

For non-conserved scalar order parameter, effective velocity of the domain wall should be

equal to its curvature. For a domain of characteristic length L, the velocity of domain wall is

v ∼ dL(t)
dt

, and the curvature of the domain K ∼ 1/L(t). Hence, the diffusive growth law for

non-conserved scalar order parameter is L ∼ t1/z, where z = 2 (called dynamical exponent)

. So far we have discussed non-conserved scalar order parameter. However, we may need

n-components vector order parameter in many systems, like nematic liquid crystals [102].
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For two components (n=2) vector order parameter in 2D there is logarithmic correction in

growth law L(t) ∼ (t/ln(t))1/2.

For the conservative order parameter, the chemical potential µ on the surface of a domain

of size L(t) is defined by, µ ∼ σ/L(t), where σ represents surface tension. Now, one can get

the variation of the concentration current D|∇µ| ∼ Dσ/L(t)2, where D is diffusion constant.

Hence, the growth of domain is obtained as dL(t)/dt ∼ Dσ/L(t)2 or L(t) ∼ (Dσt)1/z (z = 3)

[107].

We have discussed about the real-space correlation function for both non-conserved and

conserved order-parameter, but in experiments, like neutron or light scattering experiments

the measured quantity is the structure factor. The structure factor is defined by the Fourier

transform of real space correlation function, S(k, t) =
∫

dr exp(ik.r)C(r, t), where k is the

wave-vector of the scattered wave. Hence, the corresponding scaled dynamical structure

factor is defined as, S(k, t) = L(t)d f (kL(t)), where the scaling function is obtained as, f (q) =∫
dr exp(iq.r)g(r). Therefore, to understand the morphology of the dynamical system one

has to obtain the scaling functions g(r) or f (q). Also near the interface, i.e., kL(t) → ∞ the

scaled structure factor follows power law f (kL(t)) ∼ (kL(t))−(d+n) for n-components order

parameter in d-dimensions. This is know as generalized Porod’s law.

1.5.4 Coarsening in active systems

The general features of the active systems are different from their equilibrium counterpart

because the systems are settling towards a non-equilibrium steady state. Dey et al. [108] stud-

ied the coarsening for polar particles for microscopic Vicsek like models [57, 67, 75, 91, 109].

They find that these active models show non-Porod behavior. Similar results also predicted

for active nematic [110] and active polar [100] systems. Toner and Tu predicted the growth

law for coarse-grained density Lρ(r, t) ∼ t5/6 in polar systems [20, 111].

The ordering kinetics of phase separation of the ABPs is governed by conserved growth

model called as active model B [112]. Wittkowski et al. find that the activity has modest ef-

fect on the kinetics [112]. In spite of all these studies, the detail understanding about growth
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phenomenon of active system is still lacking. In this thesis we have studied the phase order-

ing kinetics of ABPs and effect of different kinds of noises.

1.6 objective and organisation of this thesis

In the previous sections, we have discussed about different classes of the active matter sys-

tems depending on the conservation laws in the system and symmetry. We have discussed

the general framework to study these active systems and compared with their equilibrium

counterparts. We have mentioned about the collective behavior and bulk properties, like

order-disorder phase transition, long-range ordering, etc., of the clean systems [19, 21, 57,

75, 76]. We have mentioned the bulk properties of these systems in the presence of differ-

ent kinds of heterogeneity which is an inevitable fact in real systems [77–86]. We have also

discussed about the ordering kinetics in the polar active systems. With these basic under-

standing about active matter systems, we have unveiled some further aspects of the polar

SPPs and ABPs that have been arranged in the following chapters. In chapter 2, we consider

a collection of polar SPPs confined in a narrow channel and find that there is formation of

moving rolls. Next, in chapter 3, we have studied the dynamics of an ABP on a substrate with

periodic array of obstacles and in corrugated channels. We find induced directionality in the

ABP motion on the substrate with periodic obstacle arrays, and a super-diffusive dynamics

of ABP in a corrugated channel. However, the dynamics of the ABP is diffusive in a channel

with flat boundary. Nature of the order-disorder phase transition in the polar systems is still

an area of debate. In chapter 4, we have studied the nature of the order-disorder transition

of a collection of polar SPPs. We find that nature of the transition can be tuned by changing

the system parameters. We also note that large density phase separation is responsible for

discontinuous transition in polar SPPs.

The polar SPPs moving with same self-propulsion speed is a key assumption in the Vicsek

model, but in real systems there is a fluctuation in the self-propulsion speed in a collection of

SPPs. In chapter 5, we have studied the role of speed inhomogeneity in a collection of polar

SPPs. As we discussed in Sec. 1.2.2, the ABPs show a motility induced phase separation
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without any alignment interaction. We can compare the kinetics of ABPs to a binary mixture

with an activity term. In chapter 6, we have studied the ordering kinetics of a collection of

ABPs and role of different types of noises in coarse-grained equations. At last, the thesis is

concluded with significant remarks in chapter 7.
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2
B O U N D A RY I N D U C E D C O N V E C T I O N I N A C O L L E C T I O N O F

P O L A R S E L F - P R O P E L L E D PA RT I C L E S

2.1 introduction

Collective behaviour of active particles are extensively studied in [19–22], but most biological

systems are confined to thin geometry [113]. Confinement and boundary plays an important

role in variety of problems in biology [113], sheared systems [41, 42] and other places like in

fluid dynamics. One classic example include Rayleigh-Bénard (RB) convection in fluid [114].

In these confined systems, the effect of boundaries is very important. In this chapter, we will

discuss about the collective behavior of polar SPPs confined in a narrow channel. 1

Boundary can play very important role in the collection of self-propelled particles. It can

induce many interesting phenomena like, in many cases, boundary can induce spontaneous

flow inside the channel [115, 116]. We write the phenomenological equations of motion for

local density and polarisation order parameter for the collection of polar self-propelled parti-

cles Eqs. 2.1 and 2.2. Self-propelled speed (SPS) of the particle introduces a non-equilibrium

coupling between density and polarisation. For zero SPS both density and polarisation are

decoupled. We solve these equations in the confined geometry shown in Fig. 2.2. At the two

boundaries of the channel orientation of rods are antiparallel, which produces a gradient

along the confinement direction. Diffusion tries to make them parallel. Hence the competi-

tion between above two create rolls of orientation along the long-axis of the channel. For zero

SPS these rolls are static and density inside the channel is homogeneous. For non-zero SPS

1 The work reported here is based on the paper “Boundary induced convection in a collection of polar self-
propelled particles", Shradha Mishra and Sudipta Pattanayak, Physica A 477, 128-135 (2017).
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Figure 2.1: (left) Vector plot of local polarisation and (right) density inside the channel for activity
RA = 0.67. Different plots are snapshot of polarisation and density at different times.
(left) local polarisation shows vortex type periodic pattern (rolls) along the long axis of the
channel. Different color dots on periodic rolls represent distinct vortex. Density also shows
periodic pattern. Bright regions are high density and dark regions are low density. Top to
bottom figures are from small to large time. With time periodic rolls for both density
and and local polarisation moves from one end to other end of the channel. Arrow on
the top of the figure represent direction of motion of periodic pattern. This direction is
spontaneously chosen from two equally possible direction in the system.

both density and polarisation are coupled and such coupling produces moving rolls.

In Fig. 2.1, we show the (left) vector plot orientation and (right) density of particles inside

the channel for SPS v0 = 1.5 at different times. We find inhomogeneous moving pattern of

orientation and density along the long axis of the channel Fig. 2.1(top to bottom). Arrow

indicate the direction of motion.

In this chapter, section 2.2 discusses the model in detail. Here we also write the hydrody-

namic equations of motion for density and polarisation. Section 2.3 discusses the numerical

details for solving these equations. We discuss our results in section 2.4 and finally conclude

with discussion and future aspect of this study in section 2.5.

2.2 model

We consider a collection of self-propelled particles of length l confined to a two-dimensional

channel whose thickness d is very small compare to its long axis L. We fix the length of the

channel L and vary the width of the channel d << L. Orientation at the lower boundary
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Figure 2.2: Geometry of confined channel and orientation of particle at the two confined boundaries.
x-direction is chosen along the long axis of the channel and z-direction is the confinement
direction. Periodic boundary condition is used along the long axis of the channel. Orienta-
tion is parallel to +x-direction at bottom boundary (z=1) and parallel to -x-direction at top
boundary (z=d). Magnitude of polarisation |P| = 1 is fixed at two boundaries and density
is maintained to mean value ρ0 = 0.1.

is parallel to horizontal axis and at the upper boundary it is antiparallel and magnitude

of polarisation fixed at two boundaries. We also maintain mean density at two confined

boundaries to avoid accumulation of particles at two boundaries. Periodic boundary condi-

tion is used for both density and polarisation along the long axis of the channel. Geometry

of confined channel and orientation of particles at the two boundaries is shown in Fig. 2.2.

2.2.1 Hydrodynamic equations of motion

Dynamics of the system is described by the equations of motion for hydrodynamic variables

for the collection of polar self-propelled particles. We write the phenomenological coupled

hydrodynamic equations of motion for density ρ, because total number of particles are con-

served and polarisation P, which is an orientation order parameter, is a broken symmetry

variable in the ordered state. We write the minimum order terms allowed by symmetry. Two

equations are

∂ρ

∂t
= −v0∇ · (ρP) + Dρ∇2ρ (2.1)

and

∂P
∂t

= −DR(−α0 + α1|P|2)P−
v0

2ρ0
∇ρ + DP∇2P (2.2)
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Figure 2.3: For zero activity RA = 0 or SPS v0 = 0.0: (a) vector plot of orientation field, which shown
periodic vortex type pattern rolls. (b) x-component of polarisation Px (c) z-component of
polarisation Pz and (d) density ρ(x): along the long axis of the channel, averaged over the
z-direction.

Density equation 2.1 is a continuity equation because total number of particles are conserved.

Right hand side of Eq. 2.1 can be written as a divergence of a current J which has two parts,

J = Ja + Jp, where Jp ∝ ∇ρ is proportional to gradient in density we call it “passive current”

and Ja ∝ v0ρP is proportional to polarisation vector P and self-propelled speed v0 and we

call it as “active current”. For zero SPS v0 = 0 or polarisation P = 0 active current is zero.

The order parameter equation 2.2 contains (i) mean field order disorder terms α0 and α1,

(ii) pressure term present because of density fluctuation and (iii) diffusion in polarisation

DP. α0 and α1 are positive and determine the mean field value of polarisation P in the bulk

|P| =
√

α0
α1

. We choose α0 = α1 = 1.0, such choice of α0 and α1 prefers homogeneous po-

larised steady state |P| = 1.0 in the bulk. ∇ρ is the pressure term and proportional to the

self-propelled speed v0 of the particle. DP term is written in the limit of equal elastic constant

approximation for splay and bend deformations in two dimensions and DR is the rotational

diffusion.
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Figure 2.4: Plot of percentage density fluctuation %∆N vs. activity RA for different width d of the
channel. ∆N shows non monotonic behaviour as we increase activity RA. Density inhomo-
geneity increases as we increase width of the channel.

We rescale all lengths by particle length l (which we choose 1) and time by rotational diffu-

sion time D−1
R .

r′ = r/l;

t′ = tDR. (2.3)

and write the dimensionless equations of motion for density

∂ρ

∂t
= −RA∇ · (ρP) + D̄ρ∇2ρ (2.4)

and polarisation order parameter

∂P
∂t

= (α0 − α1|P|2)P−
RA

2ρ0
∇ρ + D̄P∇2P. (2.5)

where

RA =
v0

lDR
(2.6)
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is the dimensionless activity. It is a ratio between the self-propelled speed v0 and the rota-

tional diffusion DR. Hence we can increase activity either by increasing speed v0 or having

small DR. We can also define dimensionless diffusions.

D̄ρ,P =
Dρ,P

l2DR
. (2.7)

which is again ratio between bulk diffusion and rotational diffusion.

2.3 numerical study

We numerically solve the coupled hydrodynamic equations of motion for density and polar-

isation order parameter. We go beyond mean field and add Gaussian random white noise to

the density

∂ρ

∂t
= −RA∇ · (ρP) + D̄ρ∇2ρ +∇ · fρ(r, t) (2.8)

and the order parameter

∂P
∂t

= −(−α0 + α1|P|2)P−
RA

2ρ0
∇ρ + DP∇2P + fP(r, t) (2.9)

random forces are chosen to have zero mean and correlations

< f i
ρ(r, t) f j

ρ(r′, t′) >= 2∆ρδijδ(r− r′)δ(t− t′) (2.10)

and

< f i
P(r, t) f j

P(r
′, t′) >= 2∆Pδijδ(r− r′)δ(t− t′) (2.11)

where ∆ρ and ∆P are dimensionless noise strengths. Numerical study is done for fix noise

strength ∆ρ = ∆P = 0.05. We fix DR = 0.1, mean density ρ0 = 0.1, diffusivities Dρ = DP =

1.0. Hence activity RA is varied by changing the SPS v0. Typical diffusive length scale in the

system δ =
√

DP
DR

and for the above specific choice of parameters δ =
√

10 ' 3.5. Hence, we

29



Figure 2.5: Plot of one dimensional density along the long axis of the channel for different self-
propelled speeds (a) For small RA = 0.13, density shows inhomogeneous structure but
with time this inhomogeneous structure does not move much from its position. (b)-(c) For
RA = 0.53 and 1.13, pattern of high and low density move along the long axis of the chan-
nel. Patterns move with different speeds at different self-propelled speeds. (d) Again for
large RA = 1.87, pattern does not move much with time. Density inhomogeneity is small
compared to that at intermediate RA. Length of the arrow denotes the shift in the density
pattern with time.

choose the lower limit on d > δ such that d is not much bigger than δ and upper limit such

that effect of confinement is important. Hence d is varied from 5 to 15. We fixed the length

of the channel and SPS is changed from from zero to large values.

We solve these PDE’s 2.8 and 2.9 using Euler method for numerical differentiation on a grid

∆x = 1.0 and ∆t = 0.1 (we have checked that numerical scheme is convergent and stable

for the above choice). Inside the channel we start from initially random order parameter

and homogeneous density ρ = ρ0 = 0.1± 0.01, At the two boundaries the magnitude of

polarisation is fixed to P0 = 1.0 and antiparallel orientation such that Px(z = 1) = 1.0,

Pz(z = 1) = 0.0 and Px(z = d) = −1.0, Pz(z = d) = 0.0 and density is maintained to mean

density ρ(z = 1) = ρ(z = d) = ρ0. Periodic boundary condition is used along the long axis

of the channel.
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2.4 results

We divide our results in two parts. First we discuss what happen when activity is turned off,

and then we discuss the effect of activity.

2.4.1 Zero activity RA = 0 or SPS v0 = 0.0

For zero activity RA = 0.0 density and order parameter are decoupled Eqs. 2.8 and 2.9.

Steady state solution for density is homogeneous density ρ = ρ0. Orientation order param-

eter shows formation of rolls along the long axis of the channel. These rolls are formed

because of competition between antiparallel boundary condition which produces a gradient

in orientation and diffusion term which tries to make them uniform. Mechanism is similar to

Rayleigh-Bénard convection in fluid dynamics, where competition between temperature gradi-

ent and gravity produces convective rolls. In Fig. 2.3 (a) we plot the vector plot of orientation

field for zero self-propelled speed v0 = 0.0. We find formation of periodic pattern or rolls

along the long axis of the channel. In Fig. 2.3(b) and (c) we also plot the x and z component of

orientation field along the long axis of the channel which confirms the above periodic struc-

ture. In Fig. 2.3 (d) we plot the density along the long axis of the channel, which remains

homogeneous inside the channel.

2.4.2 Non-zero activity or SPS v0 6= 0.0

When we switch on the activity parameter RA, hydrodynamic equations of motion for den-

sity and polarisation order parameter Eqs. 2.8 and 2.9 are coupled. Non-zero activity intro-

duces an active current Ja ∝ v0Pρ which is proportional to the SPS v0 and local polarisation

P (discussed in detail in section 2.2). This active current produces density inhomogeneity

and hence enhanced pressure in local polarisation, which is again proportional to SPS v0 or

activity parameter RA as shown in Eq. 2.8 and 2.9.
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2.4.2.1 Density fluctuation

We first calculate the density inhomogeneity for different width of the channel. Density in-

homogeneity increases as we increase the width of the channel. In figure 2.4 we plot the

percentage density fluctuation %∆ρ along the long axis of the channel averaged over trans-

verse direction for five different widths d = 5, 7, 9, 11, 13 as a function of activity parameter

RA. For very small width d = 5, density fluctuation is small (strong confinement). For width

of the channel d ≥ 7, density fluctuation shows non-monotonic behaviour as a function of

activity RA. As we change RA from zero, first increases very sharply with a peak at some

finite RA and then decreases slowly for larger activity. Peak position shift towards smaller

activity as we increase width of the channel. It changes from RA = 1.13 to 0.4 as we change

the width from d = 7 to d = 13. Hence confinement suppresses the large density fluctua-

tion present in general in self-propelled particles in bulk. Suppression of density fluctuation

because of confinement is is also found previously in the study of sheared suspension of

Self-propelled particles [41, 42].

Non-monotonic nature of curve gives a finite range of activity, where fluctuations are large.

For very small activity coupling of density to background periodic rolls is small and hence

small density fluctuation. As we increase activity, active contribution to density current in-

creases: which is proportional to the local order parameter P and hence background periodic

rolls of polarisation order parameter. Activity plays two role here, (i) it produces an active

density current proportional to local polarisation. Since such active current creates density

inhomogeneity hence (ii) it creates pressure in local polarisation. Hence for very large activ-

ity density current will be large but at the same time pressure will also increase and it will

destroy the background periodic rolls. Hence small active current (because Ja ∝ P), hence

small density inhomogeneity.

2.4.2.2 Travelling rolls

Even for zero activity as discussed in section 2.4.1, antiparallel boundary conditions at the

two confined boundaries creates rolls of orientation field. For the range of activity when den-

sity fluctuation is large, these rolls move from one end to another end of the channel. We call
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Figure 2.6: Cartoon of periodic pattern of density for finite self-propelled speed v0 or activity RA.
rmax[i] shows the position of ith maxima and rmin[i] the position of the ith minima of
density. The two arrows denote the direction of alignment at the two boundaries. We
record the position of maxima and minima at different times.

them as travelling rolls: where density and orientation both shows periodic pattern (please

see fig. 2.1 for one such activity RA = 0.67). In Fig. 2.5 we plot density for width of the

channel d = 13, along the long axis of the channel averaged over transverse direction. We

calculate density for four different times (with equal time difference) and for four different

activity strength RA = 0.13, 0.53, 1.13 and 1.87. For all activities density shows inhomoge-

neous periodic pattern. Density inhomogeneity shows variation for different activity. For

very small activity RA = 0.13, density shows small inhomogeneity and remains static with

time. For activity RA = 0.53, density is periodic as well as inhomogeneous. These periodic

pattern move with time. In Fig. 2.5(b) we draw a horizontal arrow to denote the motion

of periodic pattern with time. Larger the arrow faster the pattern move. Direction of arrow

shows the direction of motion of periodic pattern. This direction is spontaneously chosen

from two equal possible directions in the system. For activity RA = 1.13 we get the similar

result as for RA = 0.53 but density inhomogeneity is weaker. For activity RA = 1.87, den-

sity is periodic but inhomogeneity is even more weak and very small shift in peak position

as a function of time (as shown by small horizontal arrow in Fig. 2.5(d)). Hence travelling

periodic pattern and density inhomogeneity are coupled and larger density inhomogeneity

creates faster moving rolls from one end to other end of the channel. For very large activity,

density coupling is strong enough such that it destroys the background periodic pattern of

orientation and hence no travelling rolls.
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2.4.2.3 Mean square displacement

We further characterise properties of travelling rolls assuming periodic density pattern as

shown in Fig. 2.5. Cartoon picture of maxima and minima of periodic density profile for one

such realization is shown in Fig. 2.6. We track the position of maxima and minima of periodic

density pattern. Position of each maxima and minima we model as position of independent

particles moving in one dimension. Hence each maxima and minima represent one particle

and we save the position of maxima and minima or particles position with time. We calculate

the square displacement of such positions and take average over all maximas and minimas

and many initial realisations. Hence mean square displacement of is defined as

∆(t) =
1

Ne

Ne

∑
ne=1

1
2

1
Ni

Ni

∑
i=1

[
|rne

max(i, t0)− rne
max(i, t + t0)|2 +|rne

min(i, t0)− rne
min(i, t + t0)|2

]
(2.12)

where rne
max/min(i, t) is the position of maxima/minima of the ith periodic profile at time t for

nth
e realisation (as shown in Fig. 2.6). Averaging is done over all periodic positions i = 1, Ni

and number of realisations ne = 1, Ne. For our calculation we used total number of realisation

Ne = 20.

When travelling rolls form as discussed in previous section 2.4.2.2, then ∆(t) is proportional

to t2. In Fig. 2.7(a) we plot MSD, ∆(t) for different activity RA for channel of width d = 13.

For zero activity density is homogeneous and no periodic pattern and ∆(t) ' t (diffusive).

As we increase activity RA = 0.13, MSD ∆(t) is subdiffusion where ∆(t) ' tα and α < 1.

Subdiffusive behaviour shows the arrest of density in the center of the periodic rolls, which

acts like a disorder site (with small polarisation). Similar arrest of density in the presence

of quenched disorder field is found in recent study of [80]. But in our model disorder site

or center of the roll moves for sufficient large activity. For activity RA ≥ 0.67, MSD shows

two regimes with initial Subdiffusive with α < 1 to later travelling motion with α ' 2. Hence

for RA ≥ 0.67, density remains arrested for some time and then travelling rolls sets in. As

we further increase activity RA = 0.67 and 1.33 we find initial Subdiffusive with α < 1 and

the later travelling motion with α = 2. Time spent in arrested state decreases as we increase

activity. For large activity RA ≥ 1.67, ∆(t) ' tα for very small time and then switches to
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transient faster dynamics and then saturates to diffusive ∆(t) ' t for large time.

In Fig. 2.7(b) we also plot the diffusivity defined as

D(t) =
1
2t

∆(t) (2.13)

D(t) remain flat for zero activity, hence diffusion. For small activity RA = 0.13 it decrease

with time and shows arrested subdiffusion. For intermediate activities RA = 0.67 to 1.33,

D(t) shows initial subdiffusion and later travelling motion with D(t) ' t. For very large

activity RA ≥ 1.67 initial D(t) decreases with time then faster growth to diffusive regime

with constant D(t) for very long time.

We further explain the dynamics of particle inside the channel as we vary the activity RA. For

zero activity density and orientation are decoupled hence we expect normal diffusive motion

for the particle. As we have discussed before antiparallel boundary condition at the two

confined boundaries creates periodic rolls along the long axis of the channel. As we switch

on activity density is coupled to periodic orientation field. For very small activity coupling

particles are trapped in periodic orientation. center of periodic pattern acts as quenched

disorder site. For intermediate activity coupling is strong and large density inhomogeneity

as shown in Fig. 2.4. Hence for initial transient time particles are trapped to periodic pattern

of orientation and later active current sets the travelling rolls. Such initial subdiffusion to

propagating motion is very common for particle moving in periodic structure. When particle

move in a periodic background it spent some of its time in trapped phase and then start

propagation. Similar subdiffusion to propagation is found for the particle moving in periodic

media [117]. For very large activity coupling is very strong and it destroys the background

periodic pattern of orientation and hence diffusive behaviour at late time.

2.5 discussion

In our present work we write the phenomenological hydrodynamics equations of motion

for density and local polarisation order parameter Eq. 2.8 and 2.9 for the collection of self-

propelled particles. We solve these equation in the confined channel of width d � L very
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Figure 2.7: Plot of (a) mean square displacement (MSD) ∆(t) and (b) corresponding diffusion coef-
ficient D(t) = ∆(t)/(2t) vs. time t, of position of high and low density peak position
average over many realisation. Different curves are for different activity ranging from
RA = 0.0, large values RA = 1.67. For small RA ≤ 0.13, ∆(t) ' t (a) and density shows
diffusive behaviour hence D(t) approaches constant value (b) at large time. For interme-
diate 0.67 ≤ RA < 1.33, ∆(t) ' t2 and travelling periodic pattern (a) and hence D(t) ' t
(b), and for large RA ≥ 1.67, again diffusive and hence ∆(t) ' t (a) and D(t) approaches
constant value (b). Two Straight lines in (a) are line of slope 1 and 2. and in (b) straight
line is of slope 1.

small compare to the long axis of the channel. We impose an antiparallel boundary condi-

tions at the two confinement boundaries and maintain the density at its mean value and

the magnitude of polarisation constant. Such a geometry is important because it mimics the

shear. First we solved equations(1,2), for zero activity. Antiparallel boundary conditions im-

pose a gradient of orientation along the confinement direction and diffusion tries to make

them parallel. Hence there is a competition between these two terms and we find periodic

patterns of the orientation field along the long axis of the channel Fig. 2.3(a). And, since for

zero activity density is not coupled to the orientation field, it remains uniform.

Non-zero activity, turn on a contribution of active current, which is proportional to the local

polarisation inside the channel. Such active currents make the inhomogeneous density inside

the channel. Density inhomogeneity increases as we increase the width of the channel. For

fixed channel width, as we increase activity initially density inhomogeneity increases with

activity RA Fig. 2.4 and then decrease for large activity RA. For fixed channel width, for the

range of activity when density inhomogeneity is large, density periodic pattern sets in and
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start moving from one end to other end of the channel. Real space image of moving periodic

orientation rolls and density profile for fixed channel width and activity is shown is Fig. 2.1

for different times.

Travelling periodic rolls we observe here is very similar to Rayleigh-Bénard convection in

fluids. Orientation plays the role of temperature gradient and diffusion is like gravity which

acts opposite to gradient. A competition between these two produces periodic rolls and in

the presence of activity these rolls move from one end to other end of the channel.

It would be interesting to study other kinds of boundary condition on the flow properties

of active particles inside the channel. For example recent study of [118], where boundary

induces accumulation of particles. This phenomena where boundary induces spontaneous

flow in confined channel can give some insight of transport of active fluid in biology [119].
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3
E N H A N C E D D Y N A M I C S O F A C T I V E B R O W N I A N PA RT I C L E S I N

P E R I O D I C O B S TA C L E A R R AY S A N D C O R R U G AT E D C H A N N E L S

3.1 introduction

As we mentioned in previous Sec. 1.3, in addition to the extensive study of active systems in

clean environments [19, 21, 52, 57, 63, 75, 76, 97], recently people have started to look for their

bulk properties in heterogeneous medium [77–86]. In this chapter we have studied the single

particle dynamics of ABP on a 2D substrate with periodic obstacle arrays, and in corrugated

channels. 1. Active Brownian particles (ABPs) [68] are one kind of SPPs where the particles

do not have any mutual alignment interaction, and they exhibit many interesting phenomena

like motility induced phase separation [26, 47, 68, 73]. In recent study, Reichhardt et al. exam-

ine a two-dimensional system of run-and-tumble active matter disks that can exhibit motility

induced phase separation interacting with a periodic quasi-one-dimensional traveling-wave

substrate. Authors note that the collective clustering of run-and-tumble disks could be an

effective method for forming an emergent object that can move against gradients or drifts

even when individual disks on average move with the drift [120]. In another study, Reich-

hardt et al. consider ballistic active disks driven through a random obstacle array. Formation

of a pinned or clogged state occurs at much lower obstacle densities for the active disks than

for passive disks [121]. Very recently, the dynamics of the ABP is shown to be sub-diffusive

in the presence of obstacles modeled as random Lorentz gas for density of obstacles close to

1 The work reported here is based on the paper “Enhanced dynamics of active Brownian particles in periodic
obstacle arrays and corrugated channels”, Sudipta Pattanayak, Rakesh Das, Manoranjan Kumar and Shradha
Mishra, Eur. Phys. J. E 42, 62 (2019).
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percolation threshold [98]. These ABPs are shown to attain their long-time dynamics faster

than the passive (Brownian) particles, because of their persistent motion [98]. In contrast,

when obstacles are arranged periodically, it is found that the persistent length of the active

particle increases [122]. Choudhury et al., consider chemically boosted self-propelled Janus

colloids moving atop a two-dimensional crystalline surface. The authors find that the dy-

namics of the self-propelled colloid reflects a competition between hindered diffusion due

to the periodic surface and enhanced diffusion due to active motion [123]. Hence, the nature

of the heterogeneous environment modifies the dynamics of the active particles.

The dynamics of the active particle is not only modified in heterogeneous substrates, but

also can be modified using confined channel. Boundary of the confined wall plays an im-

portant role in the motion of active particles [88–90, 124]. Recently, Dey et al., showed that

the confinement can enhance the average rate of binding of the motor-cargo complexes to

the microtubule, which leads to an enhancement in the average velocity [88]. Also the asym-

metric channel corrugation induces a net-flux in the motion of microswimmers along the

channel, the strength and direction of which strongly depends on the swimmer type [89].

Furthermore, a non-zero average drift can be induced in ABP using potential modulation

between two directions in a 2D periodic corrugated channel [90].

Motivated by the fact that the arrangement of the obstacles, and different kind of confined

channel can modify the dynamics of the active particles, in the present work we ask the

question: How the dynamics of the active particle varies with its activity, and density of the

obstacles arranged periodically (i) on a two-dimensional substrate, (ii) along the boundary

of a quasi-one-dimensional channel.

To answer the first question, we numerically study the dynamics of an ABP on a 2D

substrate with periodically arranged obstacles. The ABP shows a cross-over from its initial

super-diffusive to diffusive dynamics, and such a cross-over is an intrinsic feature of the

active particles [92, 125]. We find that, due to steric interaction between the ABP and obsta-

cles, the cross-over time of the ABP increases with its self-propulsion speed. Furthermore,

we note that in a dense obstacle environment the ABP performs more directed motion. In

the later part of this paper, the dynamics of the ABP in a quasi-one-dimensional corrugated

channel comprised periodically arrayed obstacles is studied. We find that the corrugated
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channel governs a super-diffusive dynamics of the ABP along the channel without any exter-

nal drive. Also the transport is independent of the shape of the corrugated boundary, and it

only depends on packing fraction of the obstacles in the channel. However, we find the flat

boundary does not encourage the super-diffusive motion.

This chapter is organized as follows. In section 3.2 we introduce the microscopic rule

based model for the ABP in periodic geometries. The results of the numerical simulation of

2D substrate with periodic obstacles and corrugated channel are given in section 3.3.1 and

3.3.2, respectively. Finally in section 3.4, we discuss our results and future prospect of our

study.

3.2 model

We consider a circular-disk shaped active Brownian particle of radius Rp placed in a periodic

obstacle environment. Its dynamics is studied for two models; (i) in model I, we consider a

2D L× L square lattice, where circular-disk shaped obstacles of radius Ro are placed period-

ically at the vertices, and (ii) in model II, we consider a quasi-one-dimensional corrugated

channel comprised periodically arranged circular or elliptical obstacles at the boundary of

the channel. The semi-major and the semi-minor axes of the elliptical obstacles are desig-

nated by max(a′, b′) and min(a′, b′), respectively. a′ and b′ are always chosen along the x

and y-axes, respectively, as shown in Fig. 3.1. For corrugated channel with circular obstacles

a′ = b′. Let us represent the position vector of the centre of the ABP by r(t) at time t. The

ABP moves along its orientation defined by a unit vector e(t) in the x-y plane. The dynamics

of the ABP is governed by over-damped Langevin equation

dr(t)
dt

= v0e(t) + µ ∑
i

F i
0, (3.1)

de(t)
dt

=
√

2DRηR(t)× e(t), (3.2)

The first term on the right-hand-side (RHS) of Eq. 3.1 is due to the activity of the ABP, and

its self-propulsion speed is v0. The second term represents steric force acting on the ABP due

to its neighboring obstacles, and it is tuned by a parameter µ, which is 0 for the obstacle-free

40



Figure 3.1: (a) The schematic picture of a square lattice with obstacles at its vertices. Centre to centre
distance between obstacles a = 1.0. The packing fraction of the lattice is varied from
Φ = 0.125 (obstacle free substrate) to Φ = 0.39. (b) The schematic picture of a quasi-
one-dimensional corrugated channel comprised periodically arrayed circular / elliptical
obstacles. The periodicity a, and width of the channel d are shown. re f f (defined in the
text) is shown. The Φ of the channel is varied from Φ = 0.10 to 0.60 by changing d or a.
Boxes show unit cell for both cases. x and y directions for both model are shown.

substrate and 1 for all other cases. We consider F0 = −∇V, where the steric interaction is

incorporated by the Weeks-Chandler-Anderson potential defined as

V = 4ε

[(
σ

|r− ro|

)12

−
(

σ

|r− ro|

)6
]
+ ε,

for |r− ro| < re f f ,

= 0, for |r− ro| ≥ re f f . (3.3)

Here ro represents position vector of the centre of a neighboring obstacle. We treat the

ABP as a point point particle in our simulation, and its size is taken care by an effec-

tive radius re f f of the obstacles. While in model I, re f f = Rp + Ro, in model II, re f f =

Rp + a′b′/
√

a′2 sin2 θ + b′2 cos2 θ, where θ is the angle of r − ro with respect to the x-axis.

We consider ε = 1, and the parameter σ = re f f /(21/6).

The rate of change of the orientation e(t) of the ABP is given by Eq. 3.2. DR represents

the rotational diffusion constant, and ηR = ηR
z ez is the stochastic torque with zero mean and

Gaussian white noise correlations, i.e.,

< ηR(t) > = 0, (3.4)

< ηR(t1)⊗ ηR(t2) > = 1δ(t1 − t2). (3.5)

Note that the stochastic torque always points out of the substrate, i.e., along the z-axis.
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The schematic of the model I and II are shown in Fig. 3.1(a) and (b), respectively, and the

closed boxes represents respective unit cells. Colors in Fig. 3.1 shows the intensity plot of

the potential. White regions are zero-potential region, and repulsive potential increases from

white to dark red. Fig. 3.1(a) depicts a square lattice with spacing a = 1. We define packing

fraction Φ of the system as the fraction of the area of a unit cell occupied by the obstacles

and the ABP. Therefore, in model I the packing fraction is given by Φ = (πRo
2 + πRp

2)/a2.

We vary Φ from 0.125 (obstacle free substrate) to 0.39 by changing Ro so that the ABP does

not get confined in a unit cell and it can pass through the obstacles.

In Fig. 3.1(b) a corrugated channel of width d (i.e., centre to centre separation of two

neighboring obstacles in the y-direction) is shown schematically. The channel is composed

of elliptical or circular-disk shaped obstacles arrayed along the x-direction with periodicity a.

The packing fraction for corrugated channel is defined as, Φ = (πa′b′ + πRp
2)/ad. We vary

Φ in model II from 0.10 to 0.60. The surface to surface separation of the obstacles are chosen

such that the ABP can not pass through the obstacles along y-direction.

The dimensionless angular Peclet number is defined as Pe = v0/DRRp. The persistent

length of the particle is defined as l = v0/DR, and the corresponding persistent time

τ = 1/DR. The rotational diffusion constant is kept fixed at DR = 0.1, and v0 is varied

in our study. Initially the ABP is placed randomly in one of the unit cells with random e.

The dynamics of the ABP is studied using the evolution Eqs. (3.1)-(3.2). Periodic boundary

condition is used in both directions for model I and in x-direction for model II. Simulation is

done for total time steps 106 and 107 for model I and II, respectively, and smallest time step

considered is ∆t = 10−3. All the physical quantities calculated here are averaged over 10000

realizations.

3.3 results

3.3.1 Substrate with periodic array of obstacles

We first study the dynamics of the ABP on a 2D substrate with periodic array of obstacles,

i.e., for model I. Typical trajectories of the ABP is shown in Fig. 3.2. The ballistic motion at
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Figure 3.2: Plot of ballistic trajectory of four ABPs at the beginning and when they follow the obstacle
boundary are shown in (a) and (b) respectively. Initial coordinate for all ABPs is (49.5, 49.5),
and their directions are different. Four different colors used for four ABPs. The intersection
points of the dotted lines in (b) represent centre of an obstacle. The boxes in (a) represent
the end point of the trajectories, and boxes in (b) represent the starting of the trajectories.
Φ = 0.39. Plot of late time diffusive trajectory of an ABP on the two dimensional periodic
obstacle substrate of Φ = 0.39, and Φ = 0.125 (free substrate) are shown in (c) and (d)
respectively. The time interval is same (100) in (c) and (d). We consider Pe = 50.

the beginning for four ABPs with different initial direction is shown in Fig. 3.2(a). Interplay

of obstacle hindrance and DR causes the ABP to follow obstacle boundary, which is shown

in Fig. 3.2(b). This phenomena also present at late time motion. The late time trajectories of

the ABP on the 2D substrate with periodic obstacles and in obstacle free space are shown

in Fig. 3.2(c) and (d) respectively. An interesting point to note from these two figures is that

the late time trajectory of the ABP shows more directional motion in a periodic obstacle

environment in comparison to the free space.

To characterize the dynamics of the ABP, we calculate its mean square displacement (MSD)

defined as

〈∆r2(t)〉 = 1
N

N

∑
n=1

[
(xn(t)− xn(0))

2 + (yn(t)− yn(0))
2
]

, (3.6)

where N is the total number of realizations, xn(t) and yn(t) represent the respective coordi-

nates of the ABP at time t for the nth ensemble in the x-y plane. The MSD of the ABP in a

periodic obstacle environment and in a free substrate for different Pe are shown in Fig. 3.3(a)
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Figure 3.3: Plot of the mean square displacement of the ABP
〈
∆r2〉 vs. time t in the periodic square

lattice of Φ = 0.39 (a) and Φ = 0.125 (obstacle free substrate)(b). Region I and III are
ballistic and diffusive regions of the ABP respectively. Line of slope 2 (magenta) and 1
(indigo) are shown. The approximate cross-over point from super-diffusive to diffusive
dynamics for different Pe for both cases are shown by an blue arrow. In inset of (a),

〈
∆r2〉

with time t for different Pe in region II (when ABP moves along obstacle boundary) is
shown.

and (b), respectively. The ABP performs persistent random walk, which is one of the com-

mon features in the active systems [92, 98, 122, 123]. Therefore, the MSD can be written as,

〈∆r2〉 = 2DDe f f t
[

1− exp
(
− t

tc

)]
, (3.7)

where D represents dimensionality of the space, De f f is the effective diffusion constant in the

steady state, and tc is the cross-over time from initial ballistic regime < ∆r2 >= 4De f f t2/tc

for t << tc to late time diffusive regime < ∆r2 >= 4De f f t for t >> tc. The two lines

of slope 2 and 1 shown in Fig. 3.3 represent the ballistic (I) and the diffusive (III) regimes

of the ABP, respectively, for different Pe. We estimate the effective diffusivity De f f from

asymptotic limit of < ∆r2 > /4t vs. t variation as shown in Fig. 3.5 (a), and the cross-over

time tc is estimated by fitting numerical data with Eq. 3.7. The cross-over time tc for the

obstacle free environment does not change with Pe, but tc changes with Pe for the periodic

obstacle environment. The approximate change in tc is shown by arrows in Fig. 3.3 (a) and

(b). The ABP also realizes a small confinement effect (regime with label II) in the presence

44



10
-2

10
0

10
2

t / t
c

10
-2

10
0

10
2

<
∆r

2 >
/4

D
ef

ft c

10
-2

10
0

10
2

t / t
c

10
-4

10
-2

10
0

10
2

<
∆r

2 >
/4

D
ef

ft c

Pe = 25
Pe = 50
Pe = 

0 50 100 150
Pe

36

54

t c

(a) (b) (c)

100

Figure 3.4: Plot of scaled mean square displacement
〈
∆r2〉 /4De f f tc vs. scaled time t/tc of the ABP

in the square lattice of Φ = 0.39 (a) and Φ = 0.125 (obstacle free substrate) (b) are shown.
(c) The cross-over time tc with Pe for Φ = 0.39 and Φ = 0.125(obstacle free substrate) are
shown by red squares and black circles respectively.

of the obstacles during its persistent motion, and MSD shows plateau for that time duration,

which is shown in the inset of Fig. 3.3(a), and this kind confinement also present at long-time.

The scaled MSD < ∆r2 > /4De f f tc versus scaled time t/tc for different Pe for the periodic

obstacle and the obstacle free environment are plotted in Fig. 3.4(a) and (b), respectively.

In both the cases data shows good scaling collapse. The plot of tc versus Pe for the periodic

obstacle (squares) and obstacle free substrate (circles) are shown in Fig. 3.4(c). The tc changes

with Pe for periodic obstacle substrate, whereas it is constant for free substrate. Also the tc

is larger for the periodic obstacle environment as compared to the free case. Therefore the

periodicity enhances the persistence motion of the ABP.

Variation in the effective diffusion constant De f f with Pe2 for different Φ are shown in

Fig. 3.5(b). The enhanced diffusion is one of the intrinsic feature in the active systems, as

found before in [126]. We find the effective diffusivity De f f of the ABP for a fixed v0 de-

creases as we increase Φ. For Φ = 0.39 and 0.125, De f f ∼ Pe2 with slope 0.0009 and 0.0018

respectively. Interestingly, De f f in the dense periodic (p) obstacle environment is exactly half

of its value in the obstacle free ( f ) space. In the steady state, the MSD of the ABP can be

expressed by 2De f f Dp/ f
e f f t, where De f f is the effective dimensionality of the space and Dp/ f

e f f

represents the effective diffusivity in the periodic obstacle / obstacle free environment. Since

Dp
e f f = 1

2 D f
e f f , that implies the effective dimensionality for the system for dense periodic

array of obstacles reduces to one. To further explain this, we calculate probability distribu-

tion function P(Θ) of the instantaneous orientation Θ of the ABP in the steady state. Plot of

P(Θ) for the periodic obstacle and the obstacle free substrate are shown in Fig. 3.5(c) and

(d), respectively. P(Θ) shows peaks for dense periodic obstacle environment and magnitude
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Figure 3.5: (a) Variation of the < ∆r2 > /4t with time t for Pe = 50 is shown. The black and green
line is for Φ = 0.125(obstacle free substrate) and Φ = 0.39, respectively. (b) Plot of the
effective translational diffusion constant De f f of the ABP for different Pe. The black circles
and red squares and blue triangles are for the periodic Φ = 0.125 (obstacle free substrate),
Φ = 0.25 and Φ = 0.39 respectively. Linear slope for Φ = 0.125, 0.25 and 0.39 are 0.0018,
0.0011, 0.0009, respectively. Plot of P(Θ) of the ABP for Φ = 0.39 and Φ = 0.125 (obstacle
free substrate) are shown in (c) and (d) respectively. For (c) and (d) we consider Pe = 50.

of one peak is always larger. The height of the peaks decrease as we decrease Φ (data is

not shown). However, P(Θ) becomes flat for obstacle free environment. Therefore the ABP

moving in a dense periodic obstacle environment shows directional preference during its

motion. It explains why the De f f of the ABP in periodic environment is half of its value in

free space.

The periodic arrangement of the obstacles enhances the persistent motion of the ABP,

and at the late time, the motion is more like one-dimensional persistent random walk. This

phenomenon of the ABP is not present either in random obstacles [98] or in free environment.

The immediate question arises what will happen if we restrict the motion of the ABP along

one direction only. In the next part of this paper we study the dynamics of the ABP in a

quasi-one-dimensional corrugated channel as shown in Fig. 3.1(b).
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3.3.2 Corrugated channel

First we consider a corrugated channel comprised of circular-disk shaped obstacles with

periodicity a and width d. The radii of each obstacle and the ABP are chosen as Ro = 0.29

and Rp = 0.2, respectively. The dynamics of the ABP is characterized by its MSD as defined

in Eq. (3.6) and a MSD exponent β such that
〈
∆r2(t)

〉
∼ tβ. This exponent β can also be

defined as

β(t) = log10

〈
∆r2(10t)

〉
〈∆r2(t)〉 . (3.8)

The exponent β = 2 and 1 for the ballistic and the diffusive dynamics, respectively. We

fixed periodicity of the channel, and changed the width of the channel to vary the Φ of

the system. The MSD for different Φ is shown in Fig. 3.6(a), and we calculate the β from

MSD data. We note that at early time t <∼ 100, the exponent β < 1 for large Φ, i.e., the ABP

exhibits sub-diffusive dynamics for high packing fraction and it exhibits diffusive dynamics

(β = 1) for low packing fraction, as shown in Fig. 3.6(b). However, at the late time t>∼ 100, the

ABP shows super-diffusive behavior (β > 1) only for high packing fraction (Φ = 0.52, 0.43),

whereas for low packing fraction (Φ = 0.17) of the channel, the dynamics is diffusive (β = 1),

as shown in Fig. 3.6(c). Here we consider Pe = 100, and we also note similar behavior for

Pe = 50.

To understand the importance of the corrugated geometry, we also calculate the MSD

of the ABP in a quasi-one-dimensional channel with flat boundary. We note that the ABP

performs diffusive motion in the flat geometry, as is evident from Fig. 3.6(d-f) drawn for

channel width d = 0.42 and ABP radius Rp = 0.2. Therefore, the quasi-one-dimensional

corrugated channel drives the ABP towards super-diffusive dynamics (β > 1) for sufficiently

large time as shown in Fig. 6(c). But after very long time (∼ 3× 104) the ABP changes its

direction due to its rotational diffusion, and further moves in opposite direction for similar

period of time. Hence, periodicity of the corrugated channel leads to much larger (∼ 104)

persistent time / motion of the ABP for high packing fraction Φ of the obstacles.
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Figure 3.6: Plot of the mean square displacement
〈
∆r2〉 , the exponent β at early and late time of

the ABP in the corrugated channel for different Φ are shown in (a-c), respectively. We
consider Pe = 100 and Φ changes as we vary channel width d.

〈
∆r2〉, the exponent β at

early and late time of the ABP in a flat repulsive channel of width d = 0.42 are shown in
(d-f), respectively. For flat channel the radius of the ABP rp = 0.2, and Pe = 50.

The induced directionality in the quasi-one-dimensional corrugated channel motivates

us to look for a net transport of the ABP through the channel. The transport is explored

through statistical averages, specifically through the absolute value of the mean displace-

ment, ∆r(t) =
√
〈∆r2(t)〉. The transport speed is defined as VT = 1

v0
(∆r(t)/t). The VT for

different packing fraction Φ of the obstacles in the channel are shown in Fig. 3.7(a). We note

that VT increases with Φ. We can tune the Φ of the channel either by decreasing channel

width d, or by placing the obstacles more periodically (by decreasing a). Therefore, corru-
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Figure 3.7: (a) Plot of the transport speed VT of the ABP in the corrugated channel with packing
fraction Φ. We varied Φ from 0.10 to 0.60. For circles, we change channel width d to
vary Φ, and for squares, Φ is changed by varying periodicity a of the obstacles along the
boundary of the channel. (b) Plot of VT of the ABP in the corrugated channel comprised
periodically arrayed elliptical obstacles vs. b′. We fixed the Φ = 0.52 and a′ = 0.29. For (a)
and (b) Pe = 100. Error bar of VT is shown for all cases.
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gated channel with closely placed circular-disk shaped obstacles speeds up the net transport

of the ABP.

To study how the super-diffusive transport of the ABP depends on the shape of the corru-

gated channel, we consider a quasi-one-dimensional corrugated channel comprised periodi-

cally arrayed elliptical-disk shaped obstacles, as described in Sec. 4.2. The earlier described

case of circular-disk shaped obstacles is a special case of the elliptical obstacles when a′ = b′.

We keep a′ = 0.29 fixed, and vary b′ such that shape of the elliptical obstacles change from

oblate to prolate. b′ has been varied by varying the width d of the channel. b′ and width d

are chosen such that the packing fraction Φ of the channel remains constant. We note that

VT does not depend on b′ for a particular value of Φ, as shown in Fig. 3.7(b).Therefore, the

transport speed of the ABP in a corrugated channel does not depend on the shape of the

corrugated channel.

3.4 discussion

In first part of this paper, we have studied dynamics of an ABP in the presence of circular-

disk shaped obstacles arrayed periodically on a 2D substrate. In the presence of the peri-

odically arrayed obstacles, the cross-over time from ballistic to diffusive dynamics of the

ABP increases with its activity. We find the induced directionality in ABP’s motion increases

with packing fraction of the obstacles. The motion of the ABPs is directional in crowded

environment when obstacles are arrayed in periodic fashion.

Motivated by the induced directed motion of the ABP in periodic crowded environment,

in the second part of this paper, we have studied the motion of the ABP in a quasi-one-

dimensional corrugated channel, where motion of the ABP is confined along one direc-

tion. We find the super-diffusive dynamics of the ABP over a long time in the quasi-one-

dimensional corrugated channel without any external drive. This makes our study different

from the previous studies, where the net transport of the ABP is observed with asymmetric

corrugated channel [89] or using potential modulation in corrugated channel[90]. The net

transport of the ABP in a corrugated channel does not depend on the shape of the wall.
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The transport speed only depends on the packing fraction of the obstacles in the system.

However, the ABP shows usual diffusive dynamics in channel with flat boundary.

Hence the channel with corrugated wall, activity of the ABP lead to super-diffusive dy-

namics of the ABP without any external drive. Such transport is useful to understand the

dynamics of biological microorganisms, intercellular particles, since those often encounter

crowded environment during their motion. This model provides significant understanding

about the dynamics of the self-propelled particles in confined geometry, which can be veri-

fied in experiments and may be helpful for designing efficient transport mechanism. In our

current study, we have ignored the inter-particle interaction. It is also interesting to study

the dynamics of the interacting ABPs in different kinds of confined geometries.
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4
C O L L E C T I O N O F P O L A R S E L F - P R O P E L L E D PA RT I C L E S W I T H A

M O D I F I E D A L I G N M E N T I N T E R A C T I O N

4.1 introduction

In previous two chapters, we have discusses about the effects of confinement. In Chapter

2, we studied the collective behavior of polar SPPs in a narrow channel. The dynamics of

a ABP is studied on a heterogeneous substrate and in a corrugated channel in Chapter

3. In this chapter, we will discuss about bulk property of a collection of polar SPPs on a

clean substrate. One of the key features of the polar SPPs is that there is a transition from

a disordered state to a long ranged ordered state in two-dimensions with the variation of

system parameters (e.g., density, noise strength) [57, 75, 76]. In the Vicsek, it is observed

that the disordered to ordered state transition is continuous [57], but later other studies [75,

76] confirmed that the transition is discontinuous. Some studies on the topological distance

model claim the transition to be discontinuous [127], whereas other studies [128, 129] find

it continuous. Therefore, the nature of the transition of polar flock is still a matter of debate. 1

In this chapter we ask a question, whether the nature of transition in polar flock can be

tuned by tuning certain system parameters. And how do the characteristics of system change

for the two types of transitions (discontinuous / continuous) ? To answer this, we introduce

a distance dependent parameter a such that the strength of interaction decays with distance.

For a = 1, the interaction is same as that in the Vicsek model. For all non-zero distance

1 The work reported here is based on the paper “Collection of polar self-propelled particles with a modified
alignment interaction”, Sudipta Pattanayak and Shradha Mishra, J. Phys. Commun. 2, 045007 (2018).
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dependent parameter (a > 0), the system is in a disordered state at small density and high

noise strength, and in an ordered state at high density and low noise strength. We calculate

the critical noise strength ηc(a) for different a and compare it with the mean-field result.

The nature of the disorder to order transition continuously changes from discontinuous to

continuous with decreasing a. We estimate the tri-critical point in the noise strength η and

a plane, where the nature of the transition changes from discontinuous to continuous. We

also calculate the density phase separation in the system. The density phase separation order

parameter is large for a close to unity, and it monotonically decays with decreasing a . Linear

stability analysis of the homogeneous ordered state shows an instability as a approaches to

1, which is consistent with large density phase separation for a ' 1.

This chapter is organised as follows. In section 4.2, we introduce the microscopic rule

based model for distance dependent interaction. The results of numerical simulation are

given in section 4.3. In section 4.4, we write the coarse-grained hydrodynamic equation of

motion, calculate the mean field estimate of critical ηc(a), and discuss the results of linear

stability analysis. Finally in section 4.6, we discuss our results and future prospect of our

study. Section 4.5 is at the end, that contains the detailed calculation of the linear stability

analysis.

4.2 model

We study a collection of polar self-propelled particles on a two-dimensional substrate. The

particles interact through a short range alignment interaction, which decays with the metric

distance.

Each particle is defined by its position ri(t) and orientation θi(t) or unit direction vector

ni(t) = [cos θi(t), sin θi(t)]. Dynamics of the particles are given by two update equations.

One for the position and other for the orientation. Self-propulsion is introduced as a motion
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Figure 4.1: Plot of the global velocity V vs. the noise strength η for four different distance dependent
parameters a. Fig. (a-d) are for a = 1.0, 0.5, 0.4, 0.01 respectively. In Fig. (d), the variation
of V is clearly continuous for all system sizes, and there is no crossover. The variation of
V changes as we increase a, and there is a crossover for a = 1.0. Plot of the V for four
different system sizes ( N = 1000, 2000, 5000, 10000) are shown by black •, red � , green N
and blue � respectively.

towards its orientation with a fixed step size(v0 in unit time). Hence, the position update

equation of the particles

ri(t + 1) = ri(t) + v0ni, (4.1)

and the orientation update equation with a distance dependent short range alignment inter-

action

ni(t + 1) =
∑j∈R0

nj(t)ad + Ni(t)ηıi

Wi(t)
(4.2)

where the sum is over all the particles within the interaction radius (R0) of the ith particle,

i.e., |rj(t)− ri(t)| < R0(= 1). Ni(t) is the number of particles within the interaction radius of

the ith particle at time t, and d is the metric distance between a pair of particles (i, j). Wi(t) is

the normalisation factor. The strength of the noise η is varied between zero to 1, and ıi(t) is a

random unit vector. Note that this model reduces to the celebrated Vicsek model for a = 1.0.
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Figure 4.2: Upper panel : Plot of the time series of the global velocity V for four different a =
(0.01, 0.4, 0.5, 1.0), from top to bottom. The time series of the V are plotted for three
different noise strengths η1(a)(black) < η2(a)(red) < η3(a)(blue) close to the critical
noise strength ηc for each a. For a = 0.01 the time-series of the V(t) is shown for
η1 = 0.099(black), η2 = 0.100(red) and η3 = 0.101(blue). Similarly η1 < η2 < η3 for
a = 0.4, 0.5 and 1.0 are (0.358, 0.359, 0.360), (0.409, 0.410, 0.411) and (0.627, 0.628, 0.629) re-
spectively. There is a clear switching behavior in the global velocity variation for a = 1.0,
and it vanishes as we decrease a. Time-series are shifted on the vertical axis for clarity.
Lower panel : We plot the probability distribution function (PDF) of the global velocity
P(V) for four different a = (1.0, 0.5, 0.4, 0.01) in Fig. (a - d) respectively. We consider three
different η for each a, same as in upper panel. In Fig. (a) plot of P(V) is clearly bimodal,
and as we decrease a it becomes to uni-modal in Fig. (d). All the plots are for N = 5000.

4.3 numerical study

We numerically simulate the microscopic model introduced by Eqs.4.1 and 4.2 for different

distance dependent parameter a. For a = 1, the particle interacts with the same strength

with all the particles inside its interaction radius (Vicsek’s model [57]). As we decrease a,

interaction strength decays with distance. a is varied from 1.0 to small value 0.001. For

a = 0.0 the particles are non-interacting. Speed of the particles is fixed to v0 = 0.5. We

start with random orientation and homogeneously distributed particles on a 2−dimensional

substrate of size L× L with periodic boundary conditions. For all the simulations, we keep

mean density ρ0 = N
L2 = 2.0. Number of particles were varied from N = 1000 to 10000.

We start from a random state and each particle is updated using Eqs. 4.1 and 4.2. One
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Figure 4.3: Plot of the Binder cumulant U vs. the noise strength η for four different distance depen-
dent parameter a. Fig. (a-d) are for a = 1.0, 0.5, 0.4, 0.01 respectively. U varies discontinu-
ously from 1/3 (disordered state) to 2/3 (ordered state) in Fig. (a), and it goes continuously
from 1/3 to 2/3 in Fig. (d). Discontinuity in the variation of U increases with system size
for a & 0.4, and it decreases for a . 0.4. Symbols have the same meaning as in Fig. 4.1.

simulation step is counted after sequential update of all the particles. All the measurements

are performed after 105 simulation steps, and a total of 106 steps are used in simulations.

4.3.1 Disorder-to-order transition

First we study the disorder-to-order transition in the system for different a. Ordering in the

system is characterised by the global velocity,

V = | 1
N

N

∑
i=1

ni(t)|. (4.3)

In the ordered state, i.e., when large number of particles are oriented in the same direc-

tion, then V is close to 1, and it is close to zero for a random disordered state. In Fig.

4.1 (a-d) we have shown the variation of V with the noise strength η for four different

a(= 1.0, 0.5, 0.4, 0.01) respectively. For a = 1, on increasing N, the variation of V shows a

crossover behaviors. This kind of crossover is a common feature of first order transition [75,

127]. Whereas for a = 0.01, V varies continuously, and the transition is second order. The
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Figure 4.4: Main : Schematic phase diagram of the disorder-to-order transition in noise strength η and
distance dependent parameter a (η, a) plane. For all a > 0 there is a phase transition from
a disordered to an ordered phase with decreasing η across the critical noise strength line.
Dashed line indicates the nature of the transition is continuous, whereas solid line indi-
cates the discontinuous transition. The nature of transition changes from discontinuous to
continuous at a tri-critical point aTCP(square). Lower inset: we compare with the mean-field
calculation of the critical noise strength ηc for different a with our numerical data. Mean
field results fit well with numerical data for small values of a. In upper inset : plot of
1− aTCP vs. 1/N shows the variation of TCP with system size. We find aTCP converges to
a ≈ 0.39 for N → ∞(thermodynamic limit).

variation of V in the intermediate region of a, changes smoothly from one type to another.

We also estimate the critical ηc(a) for different a values, and it decreases with a, provided

other parameters (viz mean density ρ0, speed v0) are kept fixed.

Now to characterize the nature of the transition with the variation of a, we plot the time

series of the global velocity V(t) for four different a(= 0.01, 0.4, 0.5, 1.0), from top to bot-

tom in the upper panel of Fig. 4.2. We choose three different η (η1(a)(black) < η2(a)(red)

< η3(a)(blue)) for each a close to the critical noise strength ηc(a). For a = 1, we choose

η1 = 0.627, η2 = 0.628 and η3 = 0.629, and plotted the time-series of V. V(t) shows switching

behaviour, and it alternates between two finite values of V. V(t) keeps switching throughout

the simulation time. At smaller a = 0.5 (η1 = 0.409, η2 = 0.410, η3 = 0.411) we again find

switching behaviour, but the difference between two finite values of V decreases. Switch-

ing behaviour further reduces for a = 0.4 (η1 = 0.358, η2 = 0.359, η3 = 0.360). For small
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Figure 4.5: Plot of real space snapshots of the particle density distribution for four different
a(1.0, 0.5, 0.4, 0.01). Upper panel: Plot of the particle density distribution for a = 1.0 and
a = 0.5 from left to right respectively. Lower panel: Plot of the particle density distribution
for a = 0.4 and a = 0.01 in the same order. Color bar shows the number of particles in a
unit sized sub-cell.

a = 0.01 (η1 = 0.099, η2 = 0.100, η3 = 0.101) V(t) shows fluctuations, but there is no switch-

ing behaviour. We further calculate probability distribution P(V) of the global velocity for

the same set of a and η values as used for the time series plots. As shown in Fig. 4.2(a), P(V)

is bimodal for a = 1.0, i.e., there are two distinct peaks for P(V). Two finite values of V

corresponds to two states of the system. Two peaks come closer with decreasing a, and for

small a(= 0.01), P(V) shows only one broad peak in Fig. 4.2(d). The bimodal distribution of

the V confirms that the transition is discontinuous for a ' 1.

To further characterise the nature of the transition, we calculate the fourth order cumulant

or the Binder cumulant, i.e.,

U = 1− < V4 >

3 < V2 >2 (4.4)

U(η) vs. η plot is shown in Fig. 4.3. It shows strong discontinuity from U = 1/3 (for disor-

dered state) to U = 2/3 (for ordered state) as we approach critical ηc(a) for a = 1 in Fig. 4.3
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Figure 4.6: Plot of the average density phase separation order parameter < Q > vs. a, and the average
standard deviation in particle number in a unit cell < ∆φ > vs. a are shown in Fig. (a) and
(b) respectively in log-log scale. < Q > and < ∆φ > decay exponentially from a = 1.0 to
a ≈ 0.2. Both show similar power law decay with the exponent 0.13, for small values of a.
In the insets of Fig (a) and (b), we show the exponential decay of the < Q > (∼ e0.46a) and
< ∆φ > (∼ e0.33a) in semi-log scale.

(a), and discontinuity decreases with a. It smoothly goes from a disordered state (U = 1/3)

to an ordered state (U = 2/3) for a = 0.01 in Fig. 4.3 (d). For a & 0.4, U vs. η plot shows

strong discontinuity at large N, but for a . 0.4 it becomes continuous.

Therefore, The nature of the transition continuously changes from discontinuous to con-

tinuous on decreasing a. The critical noise strength ηc(a) also decreases with decreasing a.

We plot ηc(a) vs. a in the of Fig. 4.4. The solid line indicates the nature of the disorder-to-

order transition is discontinuous, and the dashed line indicates the continuous transition.

The value of a at which the above transition changes from discontinuous to continuous one,

we call it as tri-critical-point (TCP) aTCP. For a > aTCP the transition is discontinuous, and for

a < aTCP it is continuous. TCP shows a small dependence on N for any fixed v0 and ρ0. We

define the TCP for any system size as the point where the Binder cumulant U starts to show

discontinuous variation. In the upper inset of Fig. 4.4, we plot 1− aTCP vs. 1/N, and extrapo-

late the TCP for N → ∞ or 1/N → zero. As 1/N approaches to zero, 1− aTCP ≈ 0.61. Hence

the aTCP is ≈ 0.39. Hence, the extrapolated value of aTCP matches well with the aTCP in phase

diagram, which is marked as blue square in Fig. 4.4. In the lower inset of Fig. 4.4, we plot
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] vs. wave vector q. For

v0 = 0.5, Dv = 1.0, λ = 1.0, α0 = 1.0. F(q, a) becomes +ve for small q, which suggests
that hydrodynamic mode becomes unstable at smaller wave vector. Region of instability
continuously increases with increasing a.

the critical ηc(a) vs. a on semi-log scale and compare the results with the mean field result

in Eq. 4.13. Mean field approximation is good when density distribution is homogeneous. In

such limit, density at each point is close to the mean density of the system. As shown in Fig.

4.5 density distribution becomes more and more inhomogeneous as we increase a. Hence,

for the small a values numerical estimate of ηc(a) should be more close to MF. We show in

lower inset of Fig. 4.4 the numerical ηc(a) matches very well with MF for small a < 0.1.

4.3.2 Density phase separation

The density distribution of particles also changes as we vary a. Density fluctuation plays an

important role in determining the nature of the transition in polar flock [50, 75, 110, 130–133].

In Fig. 4.5 we show the real space snapshot of particle density for different a(= 1, 0.5, 0.4 and

0.01) close to critical noise strength ηc(a). Clusters are small and homogeneously distributed

for small a, but as a approaches to 1 we find large, dense and anisotropic clusters. We
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quantify the density distribution by calculating the density phase separation order parameter

in Fourier space defined as,

Q(k) =| 1
L

L

∑
i,j=1

eik·rρ(i, j) | (4.5)

where k = 2π(m,n)
L is a two dimensional wave vector and m, n = 0, 1, 2 ...., L− 1 . The reference

frame is chosen so that the orthogonal axes (1, 0) and (0, 1) are along the boundary of the

substrate, and (1, 1) represents diagonal direction. We calculate the first non-zero value of

Q(k) in all three directions Q(1, 0), Q(0, 1) and Q(1, 1). The average density phase separa-

tion order parameter < Q > is (Q(1, 0) + Q(0, 1) + Q(1, 1))/3.

We also characterize the density phase separation using the standard deviation in particle

number ∆φ in a unit size sub-cell. It is defined as

∆φ =

√√√√ 1
Nc

Nc

∑
j=1

(φj)2 − (
1

Nc

Nc

∑
j=1

φj)2 (4.6)

where φj is the number of particles in the jth sub-cell. To calculate ∆φ we first divide the

whole system into Nc(= L2) unit sized sub-cells, then calculate the number of particles in

each sub-cell, and from there we calculate the standard deviation in particle distribution.

Q(t) and ∆φ(t) are calculated at different times in the steady state, and then average over a

large time to obtain < Q > and < ∆φ > respectively. Plots of < Q > and < ∆φ > vs. a on

log-log scale are shown on Fig. 4.6 (a) and (b) respectively. For a ' 1 both < Q > and ∆φ

are large; however , as we decrease a, they decay monotonically. For a close to unity both

< Q > and < ∆φ > show fast decay (exponential), and for smaller a they decay algebraically

with a. In the insets of Fig. (a) and (b), we show the exponential decay of the density phase

separation order parameter < Q > (∼ e0.46a), and the standard deviation in particle distribu-

tion < ∆φ > (∼ e0.33a) for a ≈ 1. We find that for a ≈ 1, the density phase separation is high,

and the nature of the disorder-to-order transition is also first order. Hence, the change in

the nature of both the disorder-to-order transition and the density phase separation shows
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variation on decreasing a.

4.4 hydrodynamic equations of motion

We estimate the ηc(a) and also study the linear stability of homogeneous ordered state with

varying a. The coarse-grained hydrodynamic variables are coarse-grained density ρ(r, t) and

velocity V(r, t) and they are defined as,

ρ(r, t) =
N

∑
i=1

δ(r− ri(t)) (4.7)

V(r, t) = ∑N
i=1 v0ni(t)δ(r− ri(t))

ρ(r, t)
(4.8)

We can write the coupled hydrodynamic equations of motion for density and velocity as

obtained in Toner and Tu [52, 63]

∂tρ = −v0∇.(ρV) (4.9)

and for velocity

∂tV = α(ρ, η, a)V− β(| V |)2V− v1

2ρ0
∇ρ+ DV∇2V− λ1(V.∇)V− λ2(∇.V)V− λ3∇(| V |2)

(4.10)

For our distance dependent model we have introduced an additional general a dependence

to alignment parameter α(ρ, η, a) in the velocity equation 4.10. In [52, 63] α is treated as a

constant. But in general α is a function of microscopic parameters (e.g. density, noise strength

etc.) when derived from microscopic model. For a = 1, our model reduces to the Vicsek’s

model, and α = α0(ρ− ρc). ρc in general depends on system parameters (viz: noise strength,

speed etc.) On increasing density large noise is required to break the order or ρc increases
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with η. Using mean-field-like argument it can be shown that ρc ' η2

v2
0

[75] or α = α0(ρ− 4η2).

α shows linear dependence on ρ for a = 1, when all the particles within the coarse-grained

radius interact with same strength. In general for a < 1, strength of interaction decays with

distance. Again using the mean-field limit when density inside the coarse-grained radius is

homogeneous, following form of α is obtained

α(ρ, a, η) = α0

(
ρ0[

(a ln(a) + 1− a)
(ln(a))2 ]− 8η2

)
(4.11)

Hence α changes sign at critical ηc.

ηc(a) =
√

ρ0

8

√
(a ln(a) + 1− a)

(ln(a))2 (4.12)

Which for mean density ρ0 = 2.0 reduces to

ηc(a) =
1
2

√
(a ln(a) + 1− a)

(ln(a))2 (4.13)

The homogeneous solution for the disordered state is V0 = 0 (for η > ηc), and for the ordered

state is V0 =
√

α(ρ0,a)
β (for η < ηc).

In Fig. 4.4 (lower inset) we plot the function ηc(a) vs. a as given in Eq.4.13 on semi-log

scale and its comparison to numerically estimated ηc(a). We find that the data matches very

well with numerical result for small a limit. Deviation from the MF expression increases with

increasing a when the density distribution becomes more inhomogeneous Fig. 4.5.

Now we study the linear stability analysis of Eqs. 4.9 and 4.10 about the homogeneous

ordered state for general a. Detail steps of linear stability analysis are given in the section

4.5. We find that for large a homogeneous ordered state is unstable with respect to small

perturbation. The condition for the instability is obtained in Eq. 4.28.

α′1 >
DVq2

2
[(

λ

v0
− 1) +

√
(

λ

v0
− 1)2 +

1
2v0

] (4.14)
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where α′1(ρ0) = dα(ρ)
dρ |ρ=ρ0 = α0

(
[ (a ln(a)+1−a)

(ln(a))2 ]
)

. Hence, using the expression for α from Eq.

4.11 we get condition for instability of the hydrodynamic mode,

α0
(a ln(a) + 1− a)

(ln(a))2 − DVq2

2
[(

λ

v0
− 1) +

√
(

λ

v0
− 1)2 +

1
2v0

] > 0 (4.15)

We plot F(q, a) = α0
(a ln(a)+1−a)

(ln(a))2 − DV q2

2 [( λ
v0
− 1) +

√
( λ

v0
− 1)2 + 1

2v0
] vs. a in Fig. 4.7, and

find that the instability of the hydrodynamic mode increases with a. Unstable homogeneous

state for a ≈ 1 is consistent with the large density phase separation obtained in numerical

simulation. System shows first order disorder-to-order transition for large a. As we decrease

a the nature of the transition changes continuously, and also the density phase separation

decays.

4.5 linearised study of the broken symmetry state

The hydrodynamic equations Eq.4.9 and 4.10 admit two homogeneous solutions: an isotropic

state with V = 0 for ρ < ρc and a homogeneous ordered state with V = V0x for ρ > ρc, where

x is the direction of ordering. We are mainly interested in the symmetry broken phase. For

α(ρ) > 0 we can write the velocity field as V = (Vo + δVx)x + δVy, where x is the direction

of broken symmetry and y is the perpendicular direction. V0x =< V > is the spontaneous

average value of V in ordered phase. We choose V0 =
√

α(ρ0,a)
β and ρ = ρ0 + δρ where ρ0 is

coarse-grained density. Combining the fluctuations we can write in a vector format,

δXα(r, t) =


δρ

δVx

δVy

 (4.16)

Now we introduce fluctuations in hydrodynamic equation for density and if we consider

only linear terms then Eq.4.9 will reduce to,

∂tδρ + v0V0∂xδρ + v0ρ0∂xδVx + v0ρ0∂yδVy = 0 (4.17)
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We consider the velocity fluctuation only in the direction of orientational ordering. So δVy

and qy is zero in our analysis. Now density Eq. 4.17 we can write as,

∂tδρ + v0V0∂xδρ + v0ρ0∂xδVx = 0 (4.18)

Similarly we introduce fluctuations in velocity Eq. 4.10 and we are writing velocity fluctu-

ation equation for ordering direction. We also introduce functional density dependency in

α(ρ). We have done Taylor series expansion of α(ρ) in Eq.4.10 at ρ = ρ0, and consider upto

first order derivative term of α(ρ). Now velocity equation will reduces to,

∂tδVx = (α(ρ0) + α′1(ρ0)δρ)(V0 + δVx)− β(V2
0 + 2V0δVx)(V0 + δVx)−

v1

2ρ0
∂xδρ

+ DV∂2
xδVx + DV∂2

yδVx − λV0∂xδVx

(4.19)

where α′1 = ∂α
∂ρ |ρ0 also λ is combination of three λ′s(λ = λ1 + λ2 + 2λ3) terms.

Now considering no fluctuation along perpendicular direction of velocity field, equation

along ordering direction(x-direction) reduces to,

∂tδVx + 2α(ρ0)δVx + λV0∂x − DV∂2
xδVx − α′1V0δρ +

v1

2ρ0
∂xδρ = 0 (4.20)

Now we are introducing Fourier component, ∆Y(q, S) =
∫

dr exp(iq.r) exp(St)dt in above

two fluctuation equations 4.18, 4.20 . Then we are writing the coefficient matrix for the

coupled equations. Here we are writing qx = q.

 S + iv0V0q iv0ρ0q

i v1
2ρ0

q− α′1(ρ0)V0 S + 2α + DVq2 + iλV0q

 (4.21)

Earlier study [100, 101] finds horizontal fluctuation or fluctuation in the direction of ordering

is important when system is close to transition. Here important thing is that unlike isotropic

problem d > 2 there is no transverse mode, we always have just two longitudinal Gold-stone
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modes associated with δρ and Vx. We get solution for hydrodynamic modes in symmetry

broken state,

S± = −ic±q− ε± (4.22)

where the sound speeds,

c± =
1
2
(λ + v0)V0 ± c2 (4.23)

with

c2 =
1
2

√
(λ− v0)2V2

0 +
v0v1

2
(4.24)

and the damping ε± in the Eq. 4.22 are O(q2) and given by,

ε± = ± c±
2c2

[2α + DVq2]∓ 1
2c2

[2αv0V0 + v0V0α′1 + v0V0DVq2] (4.25)

So real part of the modes are −ε±. Now we know the instability conditions are 1) If Re[S±] >

0 we will get homogeneous polarized state, which is unstable. 2) If Re[S±] < 0 we will get

homogeneous polarized state, which is stable to small perturbation. We know the expression

for ε±,

ε± = ± c±
2c2

[DVq2 + 2α]∓ 1
2c2

[2αv0V0 + v0V0α′1 + v0V0DVq2] (4.26)

Close to transition point α ' 0. So we can write,

ε± = ± c±
2c2

[DVq2]∓ 1
2c2

[v0V0α′1 + v0V0DVq2] (4.27)

We have checked Re[S−] = −ε− < 0 always holds, so this mode is always stable. Re[S+] =

−ε+ > 0 for

α′1 >
DVq2

2
[(

λ

v0
− 1) +

√
(

λ

v0
− 1)2 +

1
2v0

], (4.28)
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and then this mode becomes unstable.

4.6 discussion

We introduce a variant of the Vicsek model [57] for the collection of polar self propelled

particles with a modified alignment interaction. Our model is similar to the celebrated Vic-

sek model for a = 1.0. Numerical simulations reveal that for all a > 0, the system shows

a transition from a disordered (global velocity V ≈ 0) to an ordered state (finite global ve-

locity) on decreasing noise strength η, and the critical noise strength ηc(a) also decreases

with a. We find that in a homogeneous system the disordered to ordered transition can be

discontinuous or continuous depending on the distance dependent parameter a. The nature

of the transition is characterized by calculating (a) the global velocity V, (b) the fourth order

variance in the global velocity (Binder cumulant U), and (c) the probability distribution of

the global velocity for different distance dependent parameter a. For the discontinuous tran-

sition, U shows a strong discontinuity close to critical noise strength ηc(a). The variation of

V with time also shows switching between two states, and the probability distribution of

the global velocity is bimodal for a ≈ 1. However, for the continuous transition, V continu-

ously varies from large to small values and U changes smoothly, and there is no switching

behaviour in the global velocity time series, also the probability distribution of the global

velocity is uni-modal.

We construct the phase diagram in the noise strength and the distance dependent parameter

(η, a) plane. The nature of the disorder-to-order transition is first order for a ' 1, and it

changes to continuous type with decreasing a, and at a tri-critical point the nature of the

transition changes from discontinuous to continuous. Earlier studies of [130, 131] find that

the disorder-to-order transition in polar flock can be mapped to the liquid-gas transition.

In our study, we find that the density plays an important role and the large density inho-

mogeneity leads to the discontinuous transition in these systems. The effect of density is

characterized by the phase separation order parameter < Q > and the standard deviation in

number of particles in unit sized sub-cells < ∆φ > for different a. We find that the density

phase separation is large for a ' 1, and it decays with decreasing a. Hence, the discontin-
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uous disorder-to-order transition and the large density phase separation are common for a

approaching to unity.

Our study concludes that the nature of the disorder-to-order transition in collection of po-

lar flock is not always necessarily first order, and it strongly depends on the interaction

amongst the particles. The study of [134] shows that the transition from random to collec-

tive motion changes from continuous to discontinuous with decreasing restriction angle. The

critical noise amplitude also decreases monotonically on decreasing the restriction angle. In

our model we propose a parameter a, which can also tune the nature of such transition. Our

model would be useful to study the disorder-to-order transition in biological and granular

systems, where interaction between close-by neighbours is stronger than the interaction of

particles with other neighbours.
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5
S E L F - P R O P E L L E D PA RT I C L E S W I T H I N H O M O G E N E O U S

Q U E N C H E D S P E E D

5.1 introduction

Most of the natural systems where the particles show collective motion, contain different

kind of inhomogeneities. Examples of these flocks range from a few micrometers to some

kilometers. Bacteria shows collective behavior in different kind of inhomogeneous medium

like the soil or inside a cell. On the other hand, flock of birds, fish schools, etc. show col-

lective behavior upto a few meters. After introduction of the Vicsek model [57] there are

numerous works, experimental as well as theoretical, about the active matter systems. Still

little is known about the impact of different kind of inhomogeneities in the active systems.

Recently, different steady state properties of the polar SPPs in inhomogeneous environments

are addressed in many theoretical and experimental works [77–79, 82, 135], as we have al-

ready discussed in Sec. 1.3.

In natural systems, all the particles do not move with the same propulsion speed. In this

chapter, we introduce a inhomogeneity in the self-propulsion speed of the polar SPPs. In

the Vicsek model [57], the polar SPPs move with a constant propulsion speed v0. But we

consider that the polar SPPs move with different self-propulsion speed, and they maintain

the speed during their motion. In this study, the self-propulsion speed of the polar SPPs

are taken from a Gaussian distribution. The fluctuation in self-propulsion speed among the

polar SPPs increases with the standard deviation σ of the Gaussian distribution.
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We have organized this chapter as follows. We have defined the microscopic model in Sec.

5.2. Technique for simulating the microscopic model and appropriate system parameter are

defined in the same section. In Sec. 5.3.1, we have discussed about the long-range ordering

of the system for different standard deviation σ of the Gaussian distribution. We find that

the long-range ordering of the system is independent of the self-propulsion speed fluctua-

tion among the particles. In Sec. 5.3.2 we characterize the ordering dynamics of the system

for different σ values. We note that the fluctuation in the self-propulsion speed among the

SPPs helps the system to reach the steady state faster, as compared to the Vicsek model.

We have also characterized different steady state properties like clustering, density phase

separation, and information transfer in the system for finite speed fluctuation among the

SPPs in Sec. 5.3.3. We note isolated cluster formation in the ordered state for small speed

fluctuation among the SPPs, whereas for large speed fluctuation the system becomes homo-

geneous in the ordered state. In Sec. 5.3.3.2, we have studied the response of the system in

the steady state to an external information. To study the system response, we have intro-

duced some quenched (space and orientation) external agents in the steady state, and these

external agents try to divert the flock to a new direction. We find that for larger fluctuation

in self-propulsion speed among the SPPs response to the external agents is fast. Hence more

inhomogeneous speed distribution introduces faster information transfer among the SPPs.

5.2 model

We consider a collection of N polar SPPs moving on a substrate of size L× L with periodic

boundary conditions. During the motion, SPPs try to follow their neighbors and interact

among themselves via short-range velocity alignment (ferromagnetic like) interaction [57].

The inhomogeneity in the system is introduced through the self-propulsion speed v0 of the

SPPs. In this model, the pointlike SPPs move at discrete time ∆t = 1 with different self-

propulsion speed v0 which are taken from a Gaussian (Normal) distribution of mean µ = 0.3

and standard deviation σ. We performed agent based numerical simulation. The standard

deviation σ is to tune the speed fluctuation among the SPPs. But, each SPP maintain its
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speed during the motion, i.e., the self-propulsion speed of the SPPs is quenched to its initial

value. We express the update equations of the SPPs as:

ri(t + 1) = ri(t) + vi
0∆t, (5.1)

ni(t + 1) =
1

Wi(t)

[
NR

∑
j=1

nj(t) + NRη0η

]
(5.2)

where ri(t) represents the position vector of the ith particle on the substrate at time t, and vi
0

is the self-propulsion speed of the ith particle which is taken from the Gaussian distribution.

ni(t) = (cosθi(t), sinθi(t)) is a unit direction vector of the ith particle, which indicates particle

direction of motion on the substrate. The direction of motion of the ith particle is calculated

from the previous direction vectors of all the particles inside its interaction range R = 1(>

vi
0∆t) where NR is the number of neighbors within R. η is the random unit vector (noise) to

incorporate the error made by the SPPs during following their neighbors, and η0 ≤ 1 defines

the strength of it. In our simulations, we consider the noise strength η0 = 0.2. For this choice

of η0, the steady state is in the ordered state for all values of σ. To study the response of

the flock to an external information, we introduce Na external agents at t = t0 (in the steady

state). θa is the direction of the external agents. The density of the external agents is defined

by ρa. The external agents are quenched in space, and they do not change the direction with

time. But they change the direction of the flock to θa through alignment interaction with the

SPPs, as defined in Eqs. 5.1 and 5.2.
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5.3 results

5.3.1 Long range ordering

We characterize the macroscopic collective behavior of the system by global orientation order

parameter is defined as:

V =
1
N
|

N

∑
i=1

ni|. (5.3)

The study of Vicsek and his collaborators [57] find long-range ordered or broken-orientational-

symmetry state in 2D for a collection polar SPPs moving with constant self-propulsion speed.

In this study, we consider that the SPPs move with different self-propulsion speed which are

taken from a Gaussian distribution with mean µ = 0.3 and standard deviation σ. σ is varied

from 0.0 to 0.05. We are able to vary σ up to 0.05 beyond which the Gaussian distribution

with µ = 0.3 will generates negative numbers, and the self-propulsion speed can not be

negative. We have calculated the global orientation order parameter V for different σ values

and find that V does not decay with the system sizes, as shown in Fig. 5.1. The non-decaying

feature of the order parameter with σ suggests that the well-known long range ordered state

in the polar systems is intact even in the presence of speed fluctuation among the SPPs.

5.3.2 Ordering to steady state

We study the effect of the speed fluctuation in the system. At the beginning, all the SPPs are

homogeneously distributed on a substrate with random orientation. For different values of

σ, the SPPs will form an ordered flock for noise strength η0 smaller than the critical noise

strength. In our study we choose η0 such that the steady states are ordered flock for all

σ values. The time required for the SPPs to reach the flock state decreases as we increase

the standard deviation σ, as shown in Fig. 5.2. Therefore, the inhomogeneity in the self-

propulsion speed of in the collection polar SPPs helps in faster ordering of the system.
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Figure 5.1: Plot of the global order parameter V with different system sizes N for four different values
of σ(0.0, 0.0005, 0.005 and 0.05) are shown in (a-d), respectively. Black circles are numerical
data and red line is exponential fitting of the numerical data points. We consider density
of the system ρ = 1.
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Figure 5.2: Plot of the global order parameter V time series for five different values of σ =
0, 0.005, 0.01, 0.03 and 0.05. We have considered 224× 224 system, and the mean density of
the system ρ = 1.

5.3.3 Steady state features

5.3.3.1 Clustering and density phase separation

We have shown snapshots of the system at the steady state for different values of σ in Fig.

5.3. As shown in Fig. 5.3, for σ = 0 (VM) there are many isolated clusters in the steady

state, whereas the isolated clusters gradually break down and form homogeneous state with

increasing σ. Now to characterize the clustering behavior for different values of σ, we have

calculated cluster size distribution at the steady state. We have calculated average number of

particles N inside the interaction radius R for different values of σ, and it is defined as cluster

size for the corresponding σ. We find that the probability distribution function (PDF) of the

cluster P(N) shows exponential decay, as shown in Fig. 5.4. We also find a good scaling
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Figure 5.3: Snapshots of the system at steady state for different values of σ = 0.0, 0.001, 0.01 and 0.05.
We have considered 224× 224 system and density ρ = 1.
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Figure 5.4: Plot of the probability distribution of the number of neighbors P(N) vs. number of neigh-
bors N for different values of σ = (0, 0.0005, 0.001, 0.01) and 0.05. Inset: Plot of P(N) vs.
scaled number of neighbors N/Nc. We consider 318× 318 system size and density ρ = 1.

behavior of PDF P(N) with N/Nc for different σ, as shown in the inset of Fig. 5.4, where Nc

is the critical number of particles inside the interaction radius R for different σ.

We have also characterized the density phase separation of the system in the steady state

for different values of σ. We have divided the L× L system into unit sized sub-cells and cal-

culate the average number of particles in each sub-cell. Then we have calculated the standard

deviation in particle number among the L2 sub-cells.

〈∆φ〉 =

√√√√ 1
L2

L2

∑
j=1

(φj)2 − (
1
L2

L2

∑
j=1

φj)2, (5.4)
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Figure 5.5: Plot of 〈∆φ〉 vs. σ for two different system sizes 142× 142 and 224× 224. The dashed line
represents slope of −0.20. We have considered density ρ = 1.
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Figure 5.6: Plot of 〈C〉 vs. t for different σ = 0, 0.001, 0.005 and 0.05 of the Gaussian distribution.
We have considered 142× 142 system size and the auto correlation is averaged over 20
ensembles. Density of the system ρ = 1.

where φj is the number of particles in jth sub-cell. We have calculated φj at different time in

the steady state. We note that the average standard deviation in particles number among the

sub-cells 〈∆φ〉 shows power-law decay with σ, and for very small σ it saturates to a finite

value, as shown in Fig. 5.5. The decay in 〈∆φ〉 with σ suggests that the system becomes

homogeneous in the ordered state with increasing speed fluctuation among the SPPs.
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Figure 5.7: Plot of tc vs. σ for different densities of the external agents ρa. We have considered three
different external agent density (ρa = 0.005, 0.01 and 0.05). We have consider 142× 142
system size and the tc is averaged over 20 ensembles.

5.3.3.2 Response to external perturbation

In this study, we characterize the advantages of the speed fluctuation among the SPPs instead

of considering the constant speed model. We have defined direction auto-correlation as:

〈C〉 = 〈cos(θi(t)− θi(0))〉 − 〈cos(θa − θi(0))〉, (5.5)

where θi(t) and θi(0) are the directions of the ith particle at time t and at the time external

agents are introduced, respectively. θa is the orientation of the external agents. 〈.〉 represents

average over all the SPPs and many realisations. We find that the auto-correlation function

takes long time to decay for σ = 0, whereas it decays faster as we increase the value of σ, as

shown in Fig. 5.6. Therefore, the system takes longer time to follow the external agents for the

constant speed model, and the SPPs align faster towards the direction of the external agents

if there is nonzero fluctuation in self-propulsion speed among them. The auto-correlation

function shows exponential decay with time. The time taken by the SPPs to follow the exter-

nal agents is defined as critical time tc (when the auto-correlation function decays to zero) of

the flock. We have considered three different density of the external agent (ρa = 0.005, 0.01

and 0.05) and find that the response of SPPs does not change with the density of the external

agent ρa, as shown in Fig. 5.7.
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5.4 discussion

In summary, we have studied the steady state behavior of a collection of polar SPPs with

fluctuation in self-propulsion speed among themselves. We find that the long range ordered

state is present for any finite fluctuation in self-propulsion speed among the SPPs. We also

find that finite speed fluctuation helps the system to reach to its steady state faster compare

to the constant speed model like the Vicsek model. To ensure this behavior of the system,

we introduce a few external agents in the system in the steady state. These external agents

divert the direction of motion of the flock to their own direction. We study the response

of the flock to the external agents for different values of σ. We find that the flock changes

its direction faster with the increasing value of the speed fluctuation σ. The system forms

isolated ordered clusters for constant speed model (σ = 0.0), whereas the ordered state of

the system becomes homogeneous as we increase the value of the speed fluctuation σ. This

homogeneous ordered state helps in faster information transfer throughout the system. But

for isolated clusters, there is a lack of information transfer among the clusters. Therefore,

the fluctuation in self-propulsion speed among the SPPs helps in faster information transfer

in the system. Recently, in an experimental study on unicellular eukaryotes, e.g., flagellates

and ciliates, Lisicki et al. [136] find that the probability distributions of swimming speed

of these eukaryotes can be accurately represented by log-normal distributions. Hence, our

study gives a comparison of constant speed vs. a distribution of of speed.
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6
A C O M PA R AT I V E S T U D Y O F O R D E R I N G K I N E T I C S I N A C T I V E

A N D PA S S I V E M O D E L B

6.1 introduction

Up to now in this thesis, we have discussed about the steady state properties of the active

polar self-propelled particles in various boundary conditions in chapter 2 and 3, and also

about bulk properties in chapter 4 and 5. The ordering kinetics of a system to a steady state

is also an active area of research. As we have discussed in the introduction section 1.2.2, the

ABPs shows motility induced phase separation without any alignment interaction beyond

a critical packing fraction Φc. In this study we have discussed about the kinetics of the

ABPs towards the phase separated state. Also we study the role of different kind of noises

(additive/multiplicative) in ordering kinetics of the ABPs.

For binary system (passive), one can describe the phase separation kinetics using con-

served scalar order parameter field ψ or model B [36, 137], and this model is also known as

Cahn-Hilliard model [137]. The order parameter field ψ is linearly related to the local den-

sity of the particles. The domain growth for this model varies as Lc(t) ∼ t1/3, as discusses in

Sec. 1.5.2, where Lc(t) is the characteristic domain length at time t. Although there is a deep

distinction in the phase separation between the active and the passive systems, still there is

a partial mapping in the coarse-graining at the large scale between the two systems. Main

difference between the passive and active systems is that the detailed balance is present in

the former systems, whereas the detailed balance is violated by the latter one. In a recent

study, Wittkowski et al. [112] introduce a gradient term ∇ψ in the passive model B. This
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gradient term is non-integrable, and it breaks the detailed balance in the passive model B.

Therefore, the resulting model is known as active model B which can not be derived from

any free energy functional. In this chapter we study the ordering kinetics in active model B

and compare it with corresponding passive model B.

This chapter is organised as follows. We have studied the effect of the activity on the

kinetics of a collection of ABPs for both critical and off-critical mixture in Sec. 6.3.1 and Sec.

6.3.2, respectively. For critical active model B, the domain growth exponent z = 4 at late time

(asymptotic limit), and the system takes larger and larger time to reach to the asymptotic

limit with increasing activity. But, for the off-critical active model B the growth exponent is

z ∼ 3. We have also investigated the effect of noise, both additive and multiplicative, in active

model B in Sec. 6.3.3. We find that the growth phenomena of active model B is independent

of the noise and the nature of the noise.

6.2 model

We consider a collection of randomly distributed active Brownian particles (ABPs) on a L× L

2D square lattice. Occupation number of any lattice point can take values 0(occupied) or

1(unoccupied). We map the system to a binary mixture: ABPs are one kind of species and

void lattice points represent another kind. The conserved coarse-grained order parameter

of the system is defined as, ψ(r, t) = nA(r, t) − nB(r, t), where nα(r, t) is the local density

of the species α(A,B). We introduce a gradient term in the Cahn-Hilliard (CH) equation, as

discussed in Sec. 1.5.2.

∂ψ(r, t)
∂t

= ∇.
{
∇[−ψ(r, t) + ψ(r, t)3 −∇2ψ(r, t)− λ(∇ψ)2]

}
(6.1)

The ψ and ψ3 terms in the right hand side represent the aggregation, and ∇2 term is for

the diffusion. λ is the activity parameter of the system. We use continuum time update with

∆t = 0.01, and ∆x = 1.0 for the coarse-grained order parameter ψ. In our simulation we have

varied the activity parameter λ.
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Figure 6.1: Upper panel: (a) Plot of the correlation length Lc vs. time t for different activity λ. Lower
panel: (b) Plot of scaled Lc/t0.25 vs. t for different activity λ. The dashed line in the lower
panel represents the slope of the Lc/t0.25 vs. t plot. We have considered 512× 512 system
size, and Lc is averaged over 20 ensembles.

In the later part of this chapter, we have studied the effect of different kind of noises

(thermal fluctuations) on the ordering kinetics of the ABPs. We have compared the effect of

both additive and multiplicative noise. We consider the strength of the multiplicative noise

ηm varies as ηm = ( 1+ψ(r,t)
2 )1/2. The order parameter update equation Eq. 6.1 in presence of

additive noise

∂ψ(r, t)
∂t

= ∇.
{
∇[−ψ(r, t) + ψ(r, t)3 −∇2ψ(r, t)− λ(∇ψ)2] + ηaf

}
, (6.2)

where ηa is the strength of the Gaussian white noise f with mean zero and unit variance.

Similarly the the update equation for ψ(r, t) in presence of multiplicative noise

∂ψ(r, t)
∂t

= ∇.
{
∇[−ψ(r, t) + ψ(r, t)3 −∇2ψ(r, t)− λ(∇ψ)2] + (

1 + ψ(r, t)
2

)1/2ηmf
}

, (6.3)

where ηm is the strength of the Gaussian f with noise with mean zero and unit variance.
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Figure 6.2: Plot of snapshots of the system at time t = 2000 for the activity λ = 0 (passive), 0.5, 1.0, 4.0
from (a-d), respectively. We have considered critical mixture ψ(r, t) is 0.0, and system size
is 256× 256.

6.3 results

6.3.1 Critical active model B

6.3.1.1 Domain growth

There will be formation of domains as the system approaches towards a steady state, and

the size of these domains are characterized by a characteristic length Lc(t). We consider

512× 512 lattice and the value of the order parameter ψ(r, t) is zero for critical (symmetric)

mixture. The activity parameter λ is varied from 0 (passive mixture) to 4.0. We find that

the characteristic length of the domain Lc(t) decreases with the activity λ, as shown in Fig.

6.1 (a). To characterize the growth exponent z in the asymptotic limit, we have scaled Lc(t)

with t0.25. If the growth exponent z = 4 then the Lc/t0.25 vs. t plot becomes flat at late time,

whereas for the passive model B slope of the Lc/t0.25 vs. t ≈ 0.08 (z = 3). We also note that

the system takes longer time to reach to its asymptotic region for large activity. For non-zero

λ, the bicontinuous domain of the passive binary mixture breaks into isolated domains, as

shown in the snapshots 6.2 . But for large λ size of these isolated domains is small compare
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Figure 6.3: Plot of C(r, t) vs. r/tγ at different times for λ = 1. γ = 1/3 for t < 50000 and γ = 1/4
for t ≥ 50000. We have considered 256× 256 system size, and C(r, t) is averaged over 20

ensembles.

to its size for small λ. Therefore, the system takes longer time to reach to asymptotic limit

for large λ.

6.3.1.2 Correlation function

To characterize the domain morphology we have calculated the correlation function C(r, t),

as defined in Sec. 1.5.3. For λ = 1.0, we find that the early time correlation function scales

with t0.33, whereas the correlation functions C(r, t) at late time scales with t0.25, as shown in

Fig. 6.3. Therefore, for any non-zero activity the early time growth exponent is z = 3 and

it changes to 4 at the asymptotic limit. We have shown the correlation functions C(r, t) at

different time for passive λ = 0 and active λ = 1.0 binary mixture in Fig. 6.4 (a) and (c),

respectively. We find that a dynamical scaling of the correlation function for both active and

passive models, as shown in Figs. 6.4 (b) and 6.4 (d). We have also shown the correlation

function at time t = 105 for different activity λ in Fig. 6.5 (a). We find that the static scaling

of the correlation function C(r, t) is not good with the activity λ.
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Figure 6.5: Plot of C(r, t) vs. r at t = 105 for different λ is shown in (a). Plot of C(r, t) vs. r/Lc at
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Figure 6.6: Upper panel: (a) Plot of the correlation length Lc vs. time t for different activity λ. Lower
panel: (b) Plot of scaled Lc/t0.25 vs. t for different activity λ. The dashed line in the lower
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6.3.2 Off-critical model B

6.3.2.1 Domain growth

In previous Sec. 6.3.1, we have discussed about critical mixture where half of the total area of

the system is occupied by the ABPs. In this section, we will discuss about the system where

less than half of the lattice points is occupied by the ABPs. The dynamics of this kind of

system can be studied by the off-critical binary mixture. However, the morphology of the

system is characterized by the minority phase (ABPs) droplets. We consider the value of the

conserved order parameter ψ(r, t) = −0.2 (40%− 60% mixture) which suggests that the 40%

of the lattice points are occupied by the ABPs. Similar to the critical mixture, we have studied

the domain growth using the Eq. 6.1. In our numerical study, we consider 256× 256 system

and varied the value of λ. We find that the characteristic length of the domain decreases

with the λ, as shown in Fig. 6.6 (a). We also characterize the growth exponent z for different

activity λ in Fig. 6.6 (b). At late time the growth exponent z ∼ 3. We also note that the

asymptotic value of z for small off-criticality ∼ 4, and its value approaches towards 3 with

increasing the off-criticality (data not shown). We characterize the domain morphology of

the off-critical mixture by calculating the dynamical correlation function C(r, t), as defined
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Figure 6.7: Plot of C(r, t) vs. r for λ = 0 and 1 are shown in (a) and (c), respectively. Plot of C(r, t) vs.
r/Lc for λ = 0 and 1 are shown in (b) and (d), respectively, where Lc is average correlation
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order parameter value is -0.2, which gives 40:60 off-critical mixture.
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Figure 6.9: Plot of ln(Lc) vs. ln(t) and α vs. ln(t) for noise free η(p) = 0.0, additive ηa(p) = 0.1 and
multiplicative ηm(p) = 0.1 noise in passive modelB are shown in (a) and (b) respectively.
Plot of ln(Lc) vs. ln(t) and α vs. ln(t) for noise free η(a) = 0.0, additive ηa(a) = 0.1 and
multiplicative ηm(a) = 0.1 noise in active modelB are shown in (c) and (d) respectively.
Here for active model B we consider the λ = 1.0. For all cases correlation length Lc is
averaged over five ensembles, and system size is 256× 256.

in Sec. 1.5.3. We have shown the plot of C(r, t) vs. r at different time for both passive (λ = 0)

and active (λ = 1.0) cases in Fig. 6.7 (a) and (c), respectively. We have also shown the scaling

of the correlation function for both λ = 0 and 1 in Fig. 6.7 (b) and (d), respectively. We find

that both passive and active off-critical mixture shows a good dynamical scaling. Moreover,

we have shown the static scaling of correlation function with activity λ, as shown in Fig.

6.8. We note that the correlation functions for different λ show relatively good scaling for

off-critical mixture compare to the critical one.

6.3.3 Effect of noise

In this section we will discuss about the effect of thermal fluctuations using an additive noise,

as discussed in Eq. 6.2. The ABPs show motility induced phase separation and the fluctu-

ation in order parameter depends on the local density. Therefore, it is suitable to consider

the fluctuations in form of multiplicative noise, as the strength of the multiplicative noise

depends of the local density, as discussed in Eq. 6.3. To characterize the growth behavior
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for different kind of noises, we have define the growth exponent 1
z = α = dln(Lc)

dln(t) , where

Lc the characteristic length of the domain. We have shown the variation of α for noise free,

additive and multiplicative noise for passive critical mixture in Fig. 6.9 (a) and for active

critical mixture in Fig. 6.9 (b). We find that the late time exponent is independent of the type

of noise.

6.4 discussion

In this chapter we have studied the phase separation dynamics of the ABPs considering the

dynamics of the conserved order parameter. We consider two different kind of mixtures:

a) critical mixture- the ABPs occupy half of the total area of the system, and b) off-critical

mixture- the ABPs occupy less than half of the area of the system. Previous study of Wit-

tkowski et al. find that the growth exponent for the active model B depends on the activity

parameter λ. The growth dynamics becomes slow as we increase the activity of the ABPs for

both critical and off-critical mixture [112]. But in our study, we find that the growth exponent

is independent of the activity of the ABPs for both critical and off-critical mixture. We also

find that the asymptotic value of the growth exponent is z = 4 for critical mixture, and the

system takes more time to reach to the asymptotic limit for the larger activity of the ABPs.

On the other hand, for off-critical mixture value of the growth exponent at the asymptotic

limit is z ∼ 3. We find good dynamical scaling for both critical and off-critical mixture. We

also note that the correlation functions of the off-critical mixture show a relatively good scal-

ing with activity, where as the correlation functions of the critical mixture does not show

scaling behavior with activity. We also studied the domain morphology for additive and

multiplicative noise and find that the domain morphology does not change in presence of

noise, and the growth exponent is independent of type of the noise.
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7
C O N C L U S I O N

In this chapter, we provide a brief summary and concluding remarks on all the studies

discussed so far. In Chapter 2, we have discussed about the collective behavior of a collec-

tion of polar SPPs in a narrow confined channel. We consider the channel with antiparallel

orientation at the two boundaries which mimics the shear. Also the SPPs interact among

them through alignment interaction. In this work, we have written the phenomenological

hydrodynamical equations of motion of the density and the local polarization field for the

collection of the polar SPPs. The anti-parallel orientation at the boundaries impose a gradient

of orientation along the vertical direction (confinement) of the channel, and the alignment

interaction among the SPPs try to make them parallel. Due to the competition between these

two terms, we find formation of a periodic pattern of the orientation field along the chan-

nel for zero activity of the particles. Non-zero activity of the SPPs induces an active current

which is proportional to the local polarization field. Such active current creates density inho-

mogeneity inside the channel. The density inhomogeneity becomes large beyond a certain

width of the channel, and the rolls start to move. Formation of the travelling periodic rolls

is similar to the Rayleigh-Bénard (RB) convection in fluids. The gradient in orientation plays

similar to the temperature gradient of the RB convection, and the alignment is like gravity

which acts opposite to the gradient. In Chapter 3, we have studied dynamics of an ABP

on a 2D substrate with periodic arrangement of obstacles, and in a quasi-one-dimensional

corrugated channel. We find that the periodic arrangement of the obstacles induces a direc-

tionality in ABP motion. We also note that the ABP shows effective one directional motion

for high packing fraction of the obstacles. Motivated by the induced directional motion of the
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ABP, we have studied the motion of the ABP in a quasi-one-dimensional corrugated channel.

The ABP performs a super-diffusive dynamics over a long time in the corrugated channel

without any external drive. This makes our study different from the previous studies where

net transport of the ABP is observed in the presence of asymmetric potential [89] or using

potential modulation in a corrugated channel [90]. We note that the net transport of the parti-

cle does not depend on the shape of the corrugated wall. However, the ABP shows diffusive

dynamics in a channel with flat boundary.

Up to now, we have discussed about the effects of confinement in the dynamics of a collec-

tion of active particles, and on a single active particle. In Chapter 4, we have studied the bulk

properties of a collection of polar SPPs on a 2D substrate. In 1995, Vicsek et al. find that these

systems show a phase transition from randomly oriented disordered state (zero global veloc-

ity) to a ordered state (finite global velocity) depending on the different system parameters

like density and noise strength [57]. The particle interacts with the neighbors inside its inter-

action range through an alignment interaction. There is a long debate about the nature of the

order-disorder phase transition in the systems with polar SPPs. In this chapter, we have stud-

ied that how does the nature of the transition depends on the system parameters? We have

introduced a distance dependent alignment interaction among the particles, and the interac-

tion is always short range. The particle will follow more its nearest neighbors compare to

the other neighbors inside the interaction range. We conclude that the nature of the disorder

to order state transition in a collection of polar SPPs is strongly depends on the interaction

amongst the particles. We note that the nature of the transition changes with the strength of

the interaction with its neighbors. A similar study of [134] shows that the the transition from

random to collective motion changes from continuous to discontinuous with decreasing re-

striction angle. In the Chapter 4, all the SPPs move with a constant self-propulsion speed.

But in natural systems, there is a inhomogeneity in the self-propulsion speed in a collec-

tion of SPPs. In Chapter 5, we have considered inhomogeneous self-propulsion speed of the

SPPs. We have varied the fluctuation in self-propulsion speed among the SPPs and find that

the long range ordering behavior of these systems is independent of the speed fluctuation

among them. We also note that the finite speed fluctuation helps the system to reach to its

steady state faster compare to the constant speed model like the Vicsek model. Due to speed
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inhomogeneity among the particles the ordered state of the system becomes homogeneous

which helps faster information transfer in the system, whereas for zero speed fluctuation

the system forms isolated clusters in the ordered state which slows down the information

transfer. Recently in an experimental study on unicellular eukaryotes, e.g., flagellates and

ciliates Lisicki et al. [136] find that the probability distributions of the swimming speed of

these eukaryotes can be accurately represented by log-normal distributions. Therefore, our

study gives a comparison between constant speed model vs. a model with Gaussian speed

distribution.

We have discussed about the different steady state properties of the active particles using

various boundary conditions in chapter 2, 3, and also about the bulk properties in Chapter

4, 5. In Chapter 6, we have discussed about the ordering kinetics of a collection of ABPs.

We consider the ABPs on a 2D lattice and studied their phase separation dynamics using

active model B. We consider two different kind of mixtures: a) critical mixture- the ABPs

occupy half of the total area of the system, and b) off-critical mixture- the ABPs occupy less

than half of the area of the system. Previous study of Wittkowski et al. [112] find that the

growth exponent for the active model B depends on the activity parameter λ. But, we find

that for both critical and off-critical mixture the growth exponent of the active model B is

independent of the activity of the particles. We also find that the asymptotic value of the

growth exponent is z = 4 for critical mixture, and the system takes more time to reach to the

asymptotic limit for the larger activity of the ABPs. On the other hand, for off-critical mixture

value of the growth exponent at the asymptotic limit is z ∼ 3. We find a good dynamical

scaling for both critical and off-critical mixture. We also note that the correlation functions of

the off-critical mixture show a relatively good scaling with activity, where as the correlation

functions of the critical mixture does not show scaling behavior with activity. Furthermore,

We have studied the domain morphology in presence of additive and multiplicative noise,

and we find that the domain morphology does not change in presence of noise, and the

growth exponent is independent of type of the noise.
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propulsion over a crystalline surface,” New Journal of Physics 19, 125010 (2017) (cit. on

pp. 39, 44).

124S. Mishra and S. Pattanayak, “Boundary induced convection in a collection of polar self-

propelled particles,” Physica A: Statistical Mechanics and its Applications 477, 128 –135

(2017) (cit. on p. 39).

125A. E. Patteson, A. Gopinath, P. K. Purohit, and P. E. Arratia, “Particle diffusion in active

fluids is non-monotonic in size,” Soft Matter 12, 2365–2372 (2016) (cit. on p. 39).

126A. Baskaran and M. C. Marchetti, “Enhanced diffusion and ordering of self-propelled

rods,” Phys. Rev. Lett. 101, 268101 (2008) (cit. on p. 45).

127B. Bhattacherjee, S. Mishra, and S. S. Manna, “Topological-distance-dependent transition

in flocks with binary interactions,” Phys. Rev. E 92, 062134 (2015) (cit. on pp. 51, 55).

128F. Ginelli and H. Chaté, “Relevance of metric-free interactions in flocking phenomena,”

Phys. Rev. Lett. 105, 168103 (2010) (cit. on p. 51).

100

http://dx.doi.org/https://doi.org/10.1007/s1095
http://dx.doi.org/https://doi.org/10.1007/s1095
http://dx.doi.org/https://doi.org/10.1007/s1095
https://doi.org/10.1038/ncomms8470
http://dx.doi.org/10.1103/PhysRevE.95.012607
http://dx.doi.org/10.1103/PhysRevE.95.012607
http://dx.doi.org/10.1103/PhysRevE.97.052613
http://dx.doi.org/10.1002/advs.201700531
http://dx.doi.org/10.1088/1367-2630/aa9b4b
http://dx.doi.org/https://doi.org/10.1016/j.physa.2017.02.061
http://dx.doi.org/https://doi.org/10.1016/j.physa.2017.02.061
http://dx.doi.org/10.1039/C5SM02800K
http://dx.doi.org/10.1103/PhysRevLett.101.268101
http://dx.doi.org/10.1103/PhysRevE.92.062134
http://dx.doi.org/10.1103/PhysRevLett.105.168103


129A. Peshkov, S. Ngo, E. Bertin, H. Chaté, and F. Ginelli, “Continuous theory of active matter

systems with metric-free interactions,” Phys. Rev. Lett. 109, 098101 (2012) (cit. on p. 51).

130A. P. Solon and J. Tailleur, “Revisiting the flocking transition using active spins,” Phys.

Rev. Lett. 111, 078101 (2013) (cit. on pp. 59, 66).

131A. P. Solon, J.-B. Caussin, D. Bartolo, H. Chaté, and J. Tailleur, “Pattern formation in

flocking models: a hydrodynamic description,” Phys. Rev. E 92, 062111 (2015) (cit. on

pp. 59, 66).

132G. Grégoire and H. Chaté, “Onset of collective and cohesive motion,” Phys. Rev. Lett. 92,

025702 (2004) (cit. on p. 59).

133D. Das, D. Das, and A. Prasad, “Giant number fluctuations in microbial ecologies,” Journal

of Theoretical Biology 308, 96 –104 (2012) (cit. on p. 59).

134M. Romensky, V. Lobaskin, and T. Ihle, “Tricritical points in a vicsek model of self-propelled

particles with bounded confidence,” Phys. Rev. E 90, 063315 (2014) (cit. on pp. 67, 88).

135D Yllanes, M Leoni, and M. C. Marchetti, “How many dissenters does it take to disorder

a flock?” New Journal of Physics 19, 103026 (2017) (cit. on p. 68).

136

137J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. i. interfacial free

energy,” The Journal of Chemical Physics 28, 258–267 (1958), eprint: https://doi.org/10.

1063/1.1744102 (cit. on p. 77).

101

Maciej  Lisicki  et  al.  “Swimming  eukaryotic  microor-ganisms exhibit  a  universal  speed

distribution,” ArXiv e-prints (2019), arXiv:arXiv:1907. 00906v1 [cond-mat.soft] (cit. on

pp. 76, 89).

http://dx.doi.org/10.1103/PhysRevLett.109.098101
http://dx.doi.org/10.1103/PhysRevLett.111.078101
http://dx.doi.org/10.1103/PhysRevLett.111.078101
http://dx.doi.org/10.1103/PhysRevE.92.062111
http://dx.doi.org/10.1103/PhysRevLett.92.025702
http://dx.doi.org/10.1103/PhysRevLett.92.025702
http://dx.doi.org/https://doi.org/10.1016/j.jtbi.2012.05.030
http://dx.doi.org/https://doi.org/10.1016/j.jtbi.2012.05.030
http://dx.doi.org/10.1103/PhysRevE.90.063315
http://stacks.iop.org/1367-2630/19/i=10/a=103026
http://arxiv.org/abs/arXiv:1907.00906v1
http://arxiv.org/abs/arXiv:1907.00906v1
http://dx.doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102

	Dedication
	Acknowledgements
	Publications
	Contents
	List of Figures
	1 Introduction
	1.1 Active matter systems: out-of-equilibrium 
	1.2 Categories of active matter systems
	1.2.1 Dry and wet systems
	1.2.2 Polar and apolar systems

	1.3 Inhomogeneity and confinement
	1.4 Methodology
	1.4.1 Microscopic rule based study or agent based simulation
	1.4.2 Phenomenology : hydrodynamic equations of motion

	1.5 Coarsening
	1.5.1 Coarsening in non-conserved systems (model A)
	1.5.2 Coarsening in conserved systems (model B)
	1.5.3 Correlation function and structure factor
	1.5.4 Coarsening in active systems

	1.6 objective and organisation of this thesis

	2 Boundary induced convection in a collection of polar self-propelled particles
	2.1 Introduction 
	2.2 Model 
	2.2.1 Hydrodynamic equations of motion

	2.3 Numerical Study 
	2.4 Results 
	2.4.1 Zero activity RA=0 or SPS v0=0.0 
	2.4.2 Non-zero activity or SPS v0 =0.0 

	2.5 Discussion 

	3 Enhanced dynamics of active Brownian particles in periodic obstacle arrays and corrugated channels
	3.1 Introduction 
	3.2 Model 
	3.3 Results 
	3.3.1 Substrate with periodic array of obstacles 
	3.3.2 Corrugated channel 

	3.4 Discussion 

	4 Collection of polar self-propelled particles with a modified alignment interaction
	4.1 Introduction 
	4.2 Model 
	4.3 Numerical Study 
	4.3.1 Disorder-to-order transition 
	4.3.2 Density phase separation 

	4.4 Hydrodynamic equations of motion
	4.5 Linearised study of the broken symmetry state
	4.6 Discussion 

	5 Self-propelled particles with inhomogeneous quenched speed
	5.1 Introduction 
	5.2 Model
	5.3 Results
	5.3.1 Long range ordering
	5.3.2 Ordering to steady state
	5.3.3 Steady state features

	5.4 Discussion

	6 A comparative study of ordering kinetics in active and passive model B
	6.1 Introduction
	6.2 Model
	6.3 Results
	6.3.1 Critical active model B
	6.3.2 off-critical model B
	6.3.3 Effect of noise

	6.4 Discussion

	7 Conclusion

